Metamath Proof Explorer


Theorem midcom

Description: Commutativity rule for the midpoint. (Contributed by Thierry Arnoux, 2-Dec-2019)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
midcl.1 φAP
midcl.2 φBP
Assertion midcom φAmid𝒢GB=Bmid𝒢GA

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 midcl.1 φAP
7 midcl.2 φBP
8 eqid Line𝒢G=Line𝒢G
9 eqid pInv𝒢G=pInv𝒢G
10 1 2 3 4 5 7 6 midcl φBmid𝒢GAP
11 eqid pInv𝒢GBmid𝒢GA=pInv𝒢GBmid𝒢GA
12 eqidd φBmid𝒢GA=Bmid𝒢GA
13 1 2 3 4 5 7 6 12 midcgr φBmid𝒢GA-˙B=Bmid𝒢GA-˙A
14 1 2 3 4 5 7 6 midbtwn φBmid𝒢GABIA
15 1 2 3 8 9 4 10 11 6 7 13 14 ismir φB=pInv𝒢GBmid𝒢GAA
16 1 2 3 4 5 6 7 9 10 ismidb φB=pInv𝒢GBmid𝒢GAAAmid𝒢GB=Bmid𝒢GA
17 15 16 mpbid φAmid𝒢GB=Bmid𝒢GA