| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
| 6 |
|
midcl.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
midcl.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 8 |
|
eqid |
⊢ ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 ) |
| 9 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
| 10 |
1 2 3 4 5 7 6
|
midcl |
⊢ ( 𝜑 → ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ∈ 𝑃 ) |
| 11 |
|
eqid |
⊢ ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ) = ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ) |
| 12 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) = ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ) |
| 13 |
1 2 3 4 5 7 6 12
|
midcgr |
⊢ ( 𝜑 → ( ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) − 𝐵 ) = ( ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) − 𝐴 ) ) |
| 14 |
1 2 3 4 5 7 6
|
midbtwn |
⊢ ( 𝜑 → ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ∈ ( 𝐵 𝐼 𝐴 ) ) |
| 15 |
1 2 3 8 9 4 10 11 6 7 13 14
|
ismir |
⊢ ( 𝜑 → 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ) ‘ 𝐴 ) ) |
| 16 |
1 2 3 4 5 6 7 9 10
|
ismidb |
⊢ ( 𝜑 → ( 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ) ‘ 𝐴 ) ↔ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ) ) |
| 17 |
15 16
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ) |