Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
6 |
|
midcl.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
7 |
|
midcl.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
8 |
|
eqid |
⊢ ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 ) |
9 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
10 |
1 2 3 4 5 7 6
|
midcl |
⊢ ( 𝜑 → ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ∈ 𝑃 ) |
11 |
|
eqid |
⊢ ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ) = ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ) |
12 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) = ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ) |
13 |
1 2 3 4 5 7 6 12
|
midcgr |
⊢ ( 𝜑 → ( ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) − 𝐵 ) = ( ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) − 𝐴 ) ) |
14 |
1 2 3 4 5 7 6
|
midbtwn |
⊢ ( 𝜑 → ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ∈ ( 𝐵 𝐼 𝐴 ) ) |
15 |
1 2 3 8 9 4 10 11 6 7 13 14
|
ismir |
⊢ ( 𝜑 → 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ) ‘ 𝐴 ) ) |
16 |
1 2 3 4 5 6 7 9 10
|
ismidb |
⊢ ( 𝜑 → ( 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ) ‘ 𝐴 ) ↔ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ) ) |
17 |
15 16
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ) |