Description: Midpoint of a null segment. (Contributed by Thierry Arnoux, 7-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismid.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
| ismid.d | ⊢ − = ( dist ‘ 𝐺 ) | ||
| ismid.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | ||
| ismid.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | ||
| ismid.1 | ⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) | ||
| midcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | ||
| midcl.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | ||
| Assertion | midid | ⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) = 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ismid.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
| 2 | ismid.d | ⊢ − = ( dist ‘ 𝐺 ) | |
| 3 | ismid.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | |
| 4 | ismid.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | |
| 5 | ismid.1 | ⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) | |
| 6 | midcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | |
| 7 | midcl.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | |
| 8 | 1 2 3 4 5 6 6 | midcl | ⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ∈ 𝑃 ) | 
| 9 | 1 2 3 4 5 6 6 | midbtwn | ⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ∈ ( 𝐴 𝐼 𝐴 ) ) | 
| 10 | 1 2 3 4 6 8 9 | axtgbtwnid | ⊢ ( 𝜑 → 𝐴 = ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ) | 
| 11 | 10 | eqcomd | ⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) = 𝐴 ) |