| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndvcl.b |  |-  B = ( Base ` M ) | 
						
							| 2 |  | mndvcl.p |  |-  .+ = ( +g ` M ) | 
						
							| 3 |  | mndvlid.z |  |-  .0. = ( 0g ` M ) | 
						
							| 4 |  | elmapex |  |-  ( X e. ( B ^m I ) -> ( B e. _V /\ I e. _V ) ) | 
						
							| 5 | 4 | simprd |  |-  ( X e. ( B ^m I ) -> I e. _V ) | 
						
							| 6 | 5 | adantl |  |-  ( ( M e. Mnd /\ X e. ( B ^m I ) ) -> I e. _V ) | 
						
							| 7 |  | elmapi |  |-  ( X e. ( B ^m I ) -> X : I --> B ) | 
						
							| 8 | 7 | adantl |  |-  ( ( M e. Mnd /\ X e. ( B ^m I ) ) -> X : I --> B ) | 
						
							| 9 | 1 3 | mndidcl |  |-  ( M e. Mnd -> .0. e. B ) | 
						
							| 10 | 9 | adantr |  |-  ( ( M e. Mnd /\ X e. ( B ^m I ) ) -> .0. e. B ) | 
						
							| 11 | 1 2 3 | mndlid |  |-  ( ( M e. Mnd /\ x e. B ) -> ( .0. .+ x ) = x ) | 
						
							| 12 | 11 | adantlr |  |-  ( ( ( M e. Mnd /\ X e. ( B ^m I ) ) /\ x e. B ) -> ( .0. .+ x ) = x ) | 
						
							| 13 | 6 8 10 12 | caofid0l |  |-  ( ( M e. Mnd /\ X e. ( B ^m I ) ) -> ( ( I X. { .0. } ) oF .+ X ) = X ) |