| Step |
Hyp |
Ref |
Expression |
| 1 |
|
motcgr3.p |
|- P = ( Base ` G ) |
| 2 |
|
motcgr3.m |
|- .- = ( dist ` G ) |
| 3 |
|
motcgr3.r |
|- .~ = ( cgrG ` G ) |
| 4 |
|
motcgr3.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
motcgr3.a |
|- ( ph -> A e. P ) |
| 6 |
|
motcgr3.b |
|- ( ph -> B e. P ) |
| 7 |
|
motcgr3.c |
|- ( ph -> C e. P ) |
| 8 |
|
motcgr3.d |
|- ( ph -> D = ( H ` A ) ) |
| 9 |
|
motcgr3.e |
|- ( ph -> E = ( H ` B ) ) |
| 10 |
|
motcgr3.f |
|- ( ph -> F = ( H ` C ) ) |
| 11 |
|
motcgr3.h |
|- ( ph -> H e. ( G Ismt G ) ) |
| 12 |
1 2 4 11 5
|
motcl |
|- ( ph -> ( H ` A ) e. P ) |
| 13 |
8 12
|
eqeltrd |
|- ( ph -> D e. P ) |
| 14 |
1 2 4 11 6
|
motcl |
|- ( ph -> ( H ` B ) e. P ) |
| 15 |
9 14
|
eqeltrd |
|- ( ph -> E e. P ) |
| 16 |
1 2 4 11 7
|
motcl |
|- ( ph -> ( H ` C ) e. P ) |
| 17 |
10 16
|
eqeltrd |
|- ( ph -> F e. P ) |
| 18 |
8 9
|
oveq12d |
|- ( ph -> ( D .- E ) = ( ( H ` A ) .- ( H ` B ) ) ) |
| 19 |
1 2 4 5 6 11
|
motcgr |
|- ( ph -> ( ( H ` A ) .- ( H ` B ) ) = ( A .- B ) ) |
| 20 |
18 19
|
eqtr2d |
|- ( ph -> ( A .- B ) = ( D .- E ) ) |
| 21 |
9 10
|
oveq12d |
|- ( ph -> ( E .- F ) = ( ( H ` B ) .- ( H ` C ) ) ) |
| 22 |
1 2 4 6 7 11
|
motcgr |
|- ( ph -> ( ( H ` B ) .- ( H ` C ) ) = ( B .- C ) ) |
| 23 |
21 22
|
eqtr2d |
|- ( ph -> ( B .- C ) = ( E .- F ) ) |
| 24 |
10 8
|
oveq12d |
|- ( ph -> ( F .- D ) = ( ( H ` C ) .- ( H ` A ) ) ) |
| 25 |
1 2 4 7 5 11
|
motcgr |
|- ( ph -> ( ( H ` C ) .- ( H ` A ) ) = ( C .- A ) ) |
| 26 |
24 25
|
eqtr2d |
|- ( ph -> ( C .- A ) = ( F .- D ) ) |
| 27 |
1 2 3 4 5 6 7 13 15 17 20 23 26
|
trgcgr |
|- ( ph -> <" A B C "> .~ <" D E F "> ) |