Metamath Proof Explorer


Theorem motcgr3

Description: Property of a motion: distances are preserved, special case of triangles. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses motcgr3.p P=BaseG
motcgr3.m -˙=distG
motcgr3.r ˙=𝒢G
motcgr3.g φG𝒢Tarski
motcgr3.a φAP
motcgr3.b φBP
motcgr3.c φCP
motcgr3.d φD=HA
motcgr3.e φE=HB
motcgr3.f φF=HC
motcgr3.h φHGIsmtG
Assertion motcgr3 φ⟨“ABC”⟩˙⟨“DEF”⟩

Proof

Step Hyp Ref Expression
1 motcgr3.p P=BaseG
2 motcgr3.m -˙=distG
3 motcgr3.r ˙=𝒢G
4 motcgr3.g φG𝒢Tarski
5 motcgr3.a φAP
6 motcgr3.b φBP
7 motcgr3.c φCP
8 motcgr3.d φD=HA
9 motcgr3.e φE=HB
10 motcgr3.f φF=HC
11 motcgr3.h φHGIsmtG
12 1 2 4 11 5 motcl φHAP
13 8 12 eqeltrd φDP
14 1 2 4 11 6 motcl φHBP
15 9 14 eqeltrd φEP
16 1 2 4 11 7 motcl φHCP
17 10 16 eqeltrd φFP
18 8 9 oveq12d φD-˙E=HA-˙HB
19 1 2 4 5 6 11 motcgr φHA-˙HB=A-˙B
20 18 19 eqtr2d φA-˙B=D-˙E
21 9 10 oveq12d φE-˙F=HB-˙HC
22 1 2 4 6 7 11 motcgr φHB-˙HC=B-˙C
23 21 22 eqtr2d φB-˙C=E-˙F
24 10 8 oveq12d φF-˙D=HC-˙HA
25 1 2 4 7 5 11 motcgr φHC-˙HA=C-˙A
26 24 25 eqtr2d φC-˙A=F-˙D
27 1 2 3 4 5 6 7 13 15 17 20 23 26 trgcgr φ⟨“ABC”⟩˙⟨“DEF”⟩