Description: Closure of motions. (Contributed by Thierry Arnoux, 15-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismot.p | |- P = ( Base ` G ) |
|
ismot.m | |- .- = ( dist ` G ) |
||
motgrp.1 | |- ( ph -> G e. V ) |
||
motco.2 | |- ( ph -> F e. ( G Ismt G ) ) |
||
motcl.a | |- ( ph -> A e. P ) |
||
Assertion | motcl | |- ( ph -> ( F ` A ) e. P ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismot.p | |- P = ( Base ` G ) |
|
2 | ismot.m | |- .- = ( dist ` G ) |
|
3 | motgrp.1 | |- ( ph -> G e. V ) |
|
4 | motco.2 | |- ( ph -> F e. ( G Ismt G ) ) |
|
5 | motcl.a | |- ( ph -> A e. P ) |
|
6 | 1 2 3 4 | motf1o | |- ( ph -> F : P -1-1-onto-> P ) |
7 | f1of | |- ( F : P -1-1-onto-> P -> F : P --> P ) |
|
8 | 6 7 | syl | |- ( ph -> F : P --> P ) |
9 | 8 5 | ffvelrnd | |- ( ph -> ( F ` A ) e. P ) |