Metamath Proof Explorer


Theorem motcl

Description: Closure of motions. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p
|- P = ( Base ` G )
ismot.m
|- .- = ( dist ` G )
motgrp.1
|- ( ph -> G e. V )
motco.2
|- ( ph -> F e. ( G Ismt G ) )
motcl.a
|- ( ph -> A e. P )
Assertion motcl
|- ( ph -> ( F ` A ) e. P )

Proof

Step Hyp Ref Expression
1 ismot.p
 |-  P = ( Base ` G )
2 ismot.m
 |-  .- = ( dist ` G )
3 motgrp.1
 |-  ( ph -> G e. V )
4 motco.2
 |-  ( ph -> F e. ( G Ismt G ) )
5 motcl.a
 |-  ( ph -> A e. P )
6 1 2 3 4 motf1o
 |-  ( ph -> F : P -1-1-onto-> P )
7 f1of
 |-  ( F : P -1-1-onto-> P -> F : P --> P )
8 6 7 syl
 |-  ( ph -> F : P --> P )
9 8 5 ffvelrnd
 |-  ( ph -> ( F ` A ) e. P )