Metamath Proof Explorer


Theorem motf1o

Description: Motions are bijections. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p
|- P = ( Base ` G )
ismot.m
|- .- = ( dist ` G )
motgrp.1
|- ( ph -> G e. V )
motco.2
|- ( ph -> F e. ( G Ismt G ) )
Assertion motf1o
|- ( ph -> F : P -1-1-onto-> P )

Proof

Step Hyp Ref Expression
1 ismot.p
 |-  P = ( Base ` G )
2 ismot.m
 |-  .- = ( dist ` G )
3 motgrp.1
 |-  ( ph -> G e. V )
4 motco.2
 |-  ( ph -> F e. ( G Ismt G ) )
5 1 2 ismot
 |-  ( G e. V -> ( F e. ( G Ismt G ) <-> ( F : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( F ` a ) .- ( F ` b ) ) = ( a .- b ) ) ) )
6 3 5 syl
 |-  ( ph -> ( F e. ( G Ismt G ) <-> ( F : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( F ` a ) .- ( F ` b ) ) = ( a .- b ) ) ) )
7 4 6 mpbid
 |-  ( ph -> ( F : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( F ` a ) .- ( F ` b ) ) = ( a .- b ) ) )
8 7 simpld
 |-  ( ph -> F : P -1-1-onto-> P )