Metamath Proof Explorer


Theorem motf1o

Description: Motions are bijections. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p P=BaseG
ismot.m -˙=distG
motgrp.1 φGV
motco.2 φFGIsmtG
Assertion motf1o φF:P1-1 ontoP

Proof

Step Hyp Ref Expression
1 ismot.p P=BaseG
2 ismot.m -˙=distG
3 motgrp.1 φGV
4 motco.2 φFGIsmtG
5 1 2 ismot GVFGIsmtGF:P1-1 ontoPaPbPFa-˙Fb=a-˙b
6 3 5 syl φFGIsmtGF:P1-1 ontoPaPbPFa-˙Fb=a-˙b
7 4 6 mpbid φF:P1-1 ontoPaPbPFa-˙Fb=a-˙b
8 7 simpld φF:P1-1 ontoP