Metamath Proof Explorer


Theorem moxfr

Description: Transfer at-most-one between related expressions. (Contributed by Stefan O'Rear, 12-Feb-2015)

Ref Expression
Hypotheses moxfr.a
|- A e. _V
moxfr.b
|- E! y x = A
moxfr.c
|- ( x = A -> ( ph <-> ps ) )
Assertion moxfr
|- ( E* x ph <-> E* y ps )

Proof

Step Hyp Ref Expression
1 moxfr.a
 |-  A e. _V
2 moxfr.b
 |-  E! y x = A
3 moxfr.c
 |-  ( x = A -> ( ph <-> ps ) )
4 1 a1i
 |-  ( y e. _V -> A e. _V )
5 euex
 |-  ( E! y x = A -> E. y x = A )
6 2 5 ax-mp
 |-  E. y x = A
7 rexv
 |-  ( E. y e. _V x = A <-> E. y x = A )
8 6 7 mpbir
 |-  E. y e. _V x = A
9 8 a1i
 |-  ( x e. _V -> E. y e. _V x = A )
10 4 9 3 rexxfr
 |-  ( E. x e. _V ph <-> E. y e. _V ps )
11 rexv
 |-  ( E. x e. _V ph <-> E. x ph )
12 rexv
 |-  ( E. y e. _V ps <-> E. y ps )
13 10 11 12 3bitr3i
 |-  ( E. x ph <-> E. y ps )
14 1 2 3 euxfrw
 |-  ( E! x ph <-> E! y ps )
15 13 14 imbi12i
 |-  ( ( E. x ph -> E! x ph ) <-> ( E. y ps -> E! y ps ) )
16 moeu
 |-  ( E* x ph <-> ( E. x ph -> E! x ph ) )
17 moeu
 |-  ( E* y ps <-> ( E. y ps -> E! y ps ) )
18 15 16 17 3bitr4i
 |-  ( E* x ph <-> E* y ps )