Description: Obsolete version of mpteq12da as of 11-Nov-2024. (Contributed by Glauco Siliprandi, 23-Oct-2021) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpteq12daOLD.1 | |- F/ x ph |
|
| mpteq12daOLD.2 | |- ( ph -> A = C ) |
||
| mpteq12daOLD.3 | |- ( ( ph /\ x e. A ) -> B = D ) |
||
| Assertion | mpteq12daOLD | |- ( ph -> ( x e. A |-> B ) = ( x e. C |-> D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12daOLD.1 | |- F/ x ph |
|
| 2 | mpteq12daOLD.2 | |- ( ph -> A = C ) |
|
| 3 | mpteq12daOLD.3 | |- ( ( ph /\ x e. A ) -> B = D ) |
|
| 4 | 1 2 | alrimi | |- ( ph -> A. x A = C ) |
| 5 | 1 3 | ralrimia | |- ( ph -> A. x e. A B = D ) |
| 6 | mpteq12f | |- ( ( A. x A = C /\ A. x e. A B = D ) -> ( x e. A |-> B ) = ( x e. C |-> D ) ) |
|
| 7 | 4 5 6 | syl2anc | |- ( ph -> ( x e. A |-> B ) = ( x e. C |-> D ) ) |