Metamath Proof Explorer


Theorem mpteq2daOLD

Description: Obsolete version of mpteq2da as of 11-Nov-2024. (Contributed by FL, 14-Sep-2013) (Revised by Mario Carneiro, 16-Dec-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mpteq2da.1
|- F/ x ph
mpteq2da.2
|- ( ( ph /\ x e. A ) -> B = C )
Assertion mpteq2daOLD
|- ( ph -> ( x e. A |-> B ) = ( x e. A |-> C ) )

Proof

Step Hyp Ref Expression
1 mpteq2da.1
 |-  F/ x ph
2 mpteq2da.2
 |-  ( ( ph /\ x e. A ) -> B = C )
3 eqid
 |-  A = A
4 3 ax-gen
 |-  A. x A = A
5 2 ex
 |-  ( ph -> ( x e. A -> B = C ) )
6 1 5 ralrimi
 |-  ( ph -> A. x e. A B = C )
7 mpteq12f
 |-  ( ( A. x A = A /\ A. x e. A B = C ) -> ( x e. A |-> B ) = ( x e. A |-> C ) )
8 4 6 7 sylancr
 |-  ( ph -> ( x e. A |-> B ) = ( x e. A |-> C ) )