Metamath Proof Explorer


Theorem mptima2

Description: Image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis mptima2.1
|- ( ph -> C C_ A )
Assertion mptima2
|- ( ph -> ( ( x e. A |-> B ) " C ) = ran ( x e. C |-> B ) )

Proof

Step Hyp Ref Expression
1 mptima2.1
 |-  ( ph -> C C_ A )
2 mptima
 |-  ( ( x e. A |-> B ) " C ) = ran ( x e. ( A i^i C ) |-> B )
3 sseqin2
 |-  ( C C_ A <-> ( A i^i C ) = C )
4 1 3 sylib
 |-  ( ph -> ( A i^i C ) = C )
5 4 mpteq1d
 |-  ( ph -> ( x e. ( A i^i C ) |-> B ) = ( x e. C |-> B ) )
6 5 rneqd
 |-  ( ph -> ran ( x e. ( A i^i C ) |-> B ) = ran ( x e. C |-> B ) )
7 2 6 syl5eq
 |-  ( ph -> ( ( x e. A |-> B ) " C ) = ran ( x e. C |-> B ) )