| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funimaeq.x |
|- F/ x ph |
| 2 |
|
funimaeq.f |
|- ( ph -> Fun F ) |
| 3 |
|
funimaeq.g |
|- ( ph -> Fun G ) |
| 4 |
|
funimaeq.a |
|- ( ph -> A C_ dom F ) |
| 5 |
|
funimaeq.d |
|- ( ph -> A C_ dom G ) |
| 6 |
|
funimaeq.e |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = ( G ` x ) ) |
| 7 |
3
|
funfnd |
|- ( ph -> G Fn dom G ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ x e. A ) -> G Fn dom G ) |
| 9 |
5
|
adantr |
|- ( ( ph /\ x e. A ) -> A C_ dom G ) |
| 10 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
| 11 |
|
fnfvima |
|- ( ( G Fn dom G /\ A C_ dom G /\ x e. A ) -> ( G ` x ) e. ( G " A ) ) |
| 12 |
8 9 10 11
|
syl3anc |
|- ( ( ph /\ x e. A ) -> ( G ` x ) e. ( G " A ) ) |
| 13 |
6 12
|
eqeltrd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. ( G " A ) ) |
| 14 |
1 2 13
|
funimassd |
|- ( ph -> ( F " A ) C_ ( G " A ) ) |
| 15 |
2
|
funfnd |
|- ( ph -> F Fn dom F ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ x e. A ) -> F Fn dom F ) |
| 17 |
4
|
adantr |
|- ( ( ph /\ x e. A ) -> A C_ dom F ) |
| 18 |
|
fnfvima |
|- ( ( F Fn dom F /\ A C_ dom F /\ x e. A ) -> ( F ` x ) e. ( F " A ) ) |
| 19 |
16 17 10 18
|
syl3anc |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. ( F " A ) ) |
| 20 |
6 19
|
eqeltrrd |
|- ( ( ph /\ x e. A ) -> ( G ` x ) e. ( F " A ) ) |
| 21 |
1 3 20
|
funimassd |
|- ( ph -> ( G " A ) C_ ( F " A ) ) |
| 22 |
14 21
|
eqssd |
|- ( ph -> ( F " A ) = ( G " A ) ) |