| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptmpoopabbrdOLD.g |
|- ( ph -> G e. W ) |
| 2 |
|
mptmpoopabbrdOLD.x |
|- ( ph -> X e. ( A ` G ) ) |
| 3 |
|
mptmpoopabbrdOLD.y |
|- ( ph -> Y e. ( B ` G ) ) |
| 4 |
|
mptmpoopabbrdOLD.v |
|- ( ph -> { <. f , h >. | ps } e. V ) |
| 5 |
|
mptmpoopabbrdOLD.r |
|- ( ( ph /\ f ( D ` G ) h ) -> ps ) |
| 6 |
|
mptmpoopabovdOLD.m |
|- M = ( g e. _V |-> ( a e. ( A ` g ) , b e. ( B ` g ) |-> { <. f , h >. | ( f ( a ( C ` g ) b ) h /\ f ( D ` g ) h ) } ) ) |
| 7 |
|
oveq12 |
|- ( ( a = X /\ b = Y ) -> ( a ( C ` G ) b ) = ( X ( C ` G ) Y ) ) |
| 8 |
7
|
breqd |
|- ( ( a = X /\ b = Y ) -> ( f ( a ( C ` G ) b ) h <-> f ( X ( C ` G ) Y ) h ) ) |
| 9 |
|
fveq2 |
|- ( g = G -> ( C ` g ) = ( C ` G ) ) |
| 10 |
9
|
oveqd |
|- ( g = G -> ( a ( C ` g ) b ) = ( a ( C ` G ) b ) ) |
| 11 |
10
|
breqd |
|- ( g = G -> ( f ( a ( C ` g ) b ) h <-> f ( a ( C ` G ) b ) h ) ) |
| 12 |
1 2 3 4 5 8 11 6
|
mptmpoopabbrdOLDOLD |
|- ( ph -> ( X ( M ` G ) Y ) = { <. f , h >. | ( f ( X ( C ` G ) Y ) h /\ f ( D ` G ) h ) } ) |