Metamath Proof Explorer


Theorem mptmpoopabovdOLD

Description: Obsolete version of mptmpoopabovd as of 13-Dec-2024. (Contributed by Alexander van der Vekens, 8-Nov-2017) (Revised by AV, 15-Jan-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mptmpoopabbrdOLD.g φGW
mptmpoopabbrdOLD.x φXAG
mptmpoopabbrdOLD.y φYBG
mptmpoopabbrdOLD.v φfh|ψV
mptmpoopabbrdOLD.r φfDGhψ
mptmpoopabovdOLD.m M=gVaAg,bBgfh|faCgbhfDgh
Assertion mptmpoopabovdOLD φXMGY=fh|fXCGYhfDGh

Proof

Step Hyp Ref Expression
1 mptmpoopabbrdOLD.g φGW
2 mptmpoopabbrdOLD.x φXAG
3 mptmpoopabbrdOLD.y φYBG
4 mptmpoopabbrdOLD.v φfh|ψV
5 mptmpoopabbrdOLD.r φfDGhψ
6 mptmpoopabovdOLD.m M=gVaAg,bBgfh|faCgbhfDgh
7 oveq12 a=Xb=YaCGb=XCGY
8 7 breqd a=Xb=YfaCGbhfXCGYh
9 fveq2 g=GCg=CG
10 9 oveqd g=GaCgb=aCGb
11 10 breqd g=GfaCgbhfaCGbh
12 1 2 3 4 5 8 11 6 mptmpoopabbrdOLDOLD φXMGY=fh|fXCGYhfDGh