Metamath Proof Explorer


Theorem mptmpoopabovd

Description: The operation value of a function value of a collection of ordered pairs of related elements. (Contributed by Alexander van der Vekens, 8-Nov-2017) (Revised by AV, 15-Jan-2021) Add disjoint variable condition on D , f , h to remove hypotheses. (Revised by SN, 13-Dec-2024)

Ref Expression
Hypotheses mptmpoopabbrd.g φGW
mptmpoopabbrd.x φXAG
mptmpoopabbrd.y φYBG
mptmpoopabovd.m M=gVaAg,bBgfh|faCgbhfDgh
Assertion mptmpoopabovd φXMGY=fh|fXCGYhfDGh

Proof

Step Hyp Ref Expression
1 mptmpoopabbrd.g φGW
2 mptmpoopabbrd.x φXAG
3 mptmpoopabbrd.y φYBG
4 mptmpoopabovd.m M=gVaAg,bBgfh|faCgbhfDgh
5 oveq12 a=Xb=YaCGb=XCGY
6 5 breqd a=Xb=YfaCGbhfXCGYh
7 fveq2 g=GCg=CG
8 7 oveqd g=GaCgb=aCGb
9 8 breqd g=GfaCgbhfaCGbh
10 1 2 3 6 9 4 mptmpoopabbrd φXMGY=fh|fXCGYhfDGh