Metamath Proof Explorer


Theorem mptmpoopabbrd

Description: The operation value of a function value of a collection of ordered pairs of elements related in two ways. (Contributed by Alexander van Vekens, 8-Nov-2017) (Revised by AV, 15-Jan-2021) Add disjoint variable condition on D , f , h to remove hypotheses. (Revised by SN, 13-Dec-2024)

Ref Expression
Hypotheses mptmpoopabbrd.g φGW
mptmpoopabbrd.x φXAG
mptmpoopabbrd.y φYBG
mptmpoopabbrd.1 a=Xb=Yτθ
mptmpoopabbrd.2 g=Gχτ
mptmpoopabbrd.m M=gVaAg,bBgfh|χfDgh
Assertion mptmpoopabbrd φXMGY=fh|θfDGh

Proof

Step Hyp Ref Expression
1 mptmpoopabbrd.g φGW
2 mptmpoopabbrd.x φXAG
3 mptmpoopabbrd.y φYBG
4 mptmpoopabbrd.1 a=Xb=Yτθ
5 mptmpoopabbrd.2 g=Gχτ
6 mptmpoopabbrd.m M=gVaAg,bBgfh|χfDgh
7 fveq2 g=GAg=AG
8 fveq2 g=GBg=BG
9 fveq2 g=GDg=DG
10 9 breqd g=GfDghfDGh
11 5 10 anbi12d g=GχfDghτfDGh
12 11 opabbidv g=Gfh|χfDgh=fh|τfDGh
13 7 8 12 mpoeq123dv g=GaAg,bBgfh|χfDgh=aAG,bBGfh|τfDGh
14 1 elexd φGV
15 fvex AGV
16 fvex BGV
17 15 16 mpoex aAG,bBGfh|τfDGhV
18 17 a1i φaAG,bBGfh|τfDGhV
19 6 13 14 18 fvmptd3 φMG=aAG,bBGfh|τfDGh
20 19 oveqd φXMGY=XaAG,bBGfh|τfDGhY
21 4 anbi1d a=Xb=YτfDGhθfDGh
22 21 opabbidv a=Xb=Yfh|τfDGh=fh|θfDGh
23 eqid aAG,bBGfh|τfDGh=aAG,bBGfh|τfDGh
24 ancom θfDGhfDGhθ
25 24 opabbii fh|θfDGh=fh|fDGhθ
26 opabresex2 fh|fDGhθV
27 25 26 eqeltri fh|θfDGhV
28 22 23 27 ovmpoa XAGYBGXaAG,bBGfh|τfDGhY=fh|θfDGh
29 2 3 28 syl2anc φXaAG,bBGfh|τfDGhY=fh|θfDGh
30 20 29 eqtrd φXMGY=fh|θfDGh