Metamath Proof Explorer


Theorem mpv

Description: Value of multiplication on positive reals. (Contributed by NM, 28-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion mpv
|- ( ( A e. P. /\ B e. P. ) -> ( A .P. B ) = { x | E. y e. A E. z e. B x = ( y .Q z ) } )

Proof

Step Hyp Ref Expression
1 df-mp
 |-  .P. = ( u e. P. , v e. P. |-> { f | E. g e. u E. h e. v f = ( g .Q h ) } )
2 mulclnq
 |-  ( ( g e. Q. /\ h e. Q. ) -> ( g .Q h ) e. Q. )
3 1 2 genpv
 |-  ( ( A e. P. /\ B e. P. ) -> ( A .P. B ) = { x | E. y e. A E. z e. B x = ( y .Q z ) } )