Description: The union of a collection of closed sets is a subset. (Contributed by Zhi Wang, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mreuniss | |- ( ( C e. ( Moore ` X ) /\ S C_ C ) -> U. S C_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniss | |- ( S C_ C -> U. S C_ U. C ) |
|
| 2 | 1 | adantl | |- ( ( C e. ( Moore ` X ) /\ S C_ C ) -> U. S C_ U. C ) |
| 3 | mreuni | |- ( C e. ( Moore ` X ) -> U. C = X ) |
|
| 4 | 3 | adantr | |- ( ( C e. ( Moore ` X ) /\ S C_ C ) -> U. C = X ) |
| 5 | 2 4 | sseqtrd | |- ( ( C e. ( Moore ` X ) /\ S C_ C ) -> U. S C_ X ) |