Metamath Proof Explorer


Theorem msrfo

Description: The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mstaval.r
|- R = ( mStRed ` T )
mstaval.s
|- S = ( mStat ` T )
msrfo.p
|- P = ( mPreSt ` T )
Assertion msrfo
|- R : P -onto-> S

Proof

Step Hyp Ref Expression
1 mstaval.r
 |-  R = ( mStRed ` T )
2 mstaval.s
 |-  S = ( mStat ` T )
3 msrfo.p
 |-  P = ( mPreSt ` T )
4 3 1 msrf
 |-  R : P --> P
5 ffn
 |-  ( R : P --> P -> R Fn P )
6 4 5 ax-mp
 |-  R Fn P
7 dffn4
 |-  ( R Fn P <-> R : P -onto-> ran R )
8 6 7 mpbi
 |-  R : P -onto-> ran R
9 1 2 mstaval
 |-  S = ran R
10 foeq3
 |-  ( S = ran R -> ( R : P -onto-> S <-> R : P -onto-> ran R ) )
11 9 10 ax-mp
 |-  ( R : P -onto-> S <-> R : P -onto-> ran R )
12 8 11 mpbir
 |-  R : P -onto-> S