Description: The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mstaval.r | |- R = ( mStRed ` T ) |
|
| mstaval.s | |- S = ( mStat ` T ) |
||
| msrfo.p | |- P = ( mPreSt ` T ) |
||
| Assertion | msrfo | |- R : P -onto-> S |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mstaval.r | |- R = ( mStRed ` T ) |
|
| 2 | mstaval.s | |- S = ( mStat ` T ) |
|
| 3 | msrfo.p | |- P = ( mPreSt ` T ) |
|
| 4 | 3 1 | msrf | |- R : P --> P |
| 5 | ffn | |- ( R : P --> P -> R Fn P ) |
|
| 6 | 4 5 | ax-mp | |- R Fn P |
| 7 | dffn4 | |- ( R Fn P <-> R : P -onto-> ran R ) |
|
| 8 | 6 7 | mpbi | |- R : P -onto-> ran R |
| 9 | 1 2 | mstaval | |- S = ran R |
| 10 | foeq3 | |- ( S = ran R -> ( R : P -onto-> S <-> R : P -onto-> ran R ) ) |
|
| 11 | 9 10 | ax-mp | |- ( R : P -onto-> S <-> R : P -onto-> ran R ) |
| 12 | 8 11 | mpbir | |- R : P -onto-> S |