Metamath Proof Explorer


Theorem mstapst

Description: A statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mstapst.p
|- P = ( mPreSt ` T )
mstapst.s
|- S = ( mStat ` T )
Assertion mstapst
|- S C_ P

Proof

Step Hyp Ref Expression
1 mstapst.p
 |-  P = ( mPreSt ` T )
2 mstapst.s
 |-  S = ( mStat ` T )
3 eqid
 |-  ( mStRed ` T ) = ( mStRed ` T )
4 3 2 mstaval
 |-  S = ran ( mStRed ` T )
5 1 3 msrf
 |-  ( mStRed ` T ) : P --> P
6 frn
 |-  ( ( mStRed ` T ) : P --> P -> ran ( mStRed ` T ) C_ P )
7 5 6 ax-mp
 |-  ran ( mStRed ` T ) C_ P
8 4 7 eqsstri
 |-  S C_ P