Description: A statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mstapst.p | |- P = ( mPreSt ` T ) |
|
| mstapst.s | |- S = ( mStat ` T ) |
||
| Assertion | mstapst | |- S C_ P |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mstapst.p | |- P = ( mPreSt ` T ) |
|
| 2 | mstapst.s | |- S = ( mStat ` T ) |
|
| 3 | eqid | |- ( mStRed ` T ) = ( mStRed ` T ) |
|
| 4 | 3 2 | mstaval | |- S = ran ( mStRed ` T ) |
| 5 | 1 3 | msrf | |- ( mStRed ` T ) : P --> P |
| 6 | frn | |- ( ( mStRed ` T ) : P --> P -> ran ( mStRed ` T ) C_ P ) |
|
| 7 | 5 6 | ax-mp | |- ran ( mStRed ` T ) C_ P |
| 8 | 4 7 | eqsstri | |- S C_ P |