Step |
Hyp |
Ref |
Expression |
1 |
|
mstapst.p |
|- P = ( mPreSt ` T ) |
2 |
|
mstapst.s |
|- S = ( mStat ` T ) |
3 |
|
elmsta.v |
|- V = ( mVars ` T ) |
4 |
|
elmsta.z |
|- Z = U. ( V " ( H u. { A } ) ) |
5 |
1 2
|
mstapst |
|- S C_ P |
6 |
5
|
sseli |
|- ( <. D , H , A >. e. S -> <. D , H , A >. e. P ) |
7 |
|
eqid |
|- ( mStRed ` T ) = ( mStRed ` T ) |
8 |
3 1 7 4
|
msrval |
|- ( <. D , H , A >. e. P -> ( ( mStRed ` T ) ` <. D , H , A >. ) = <. ( D i^i ( Z X. Z ) ) , H , A >. ) |
9 |
6 8
|
syl |
|- ( <. D , H , A >. e. S -> ( ( mStRed ` T ) ` <. D , H , A >. ) = <. ( D i^i ( Z X. Z ) ) , H , A >. ) |
10 |
7 2
|
msrid |
|- ( <. D , H , A >. e. S -> ( ( mStRed ` T ) ` <. D , H , A >. ) = <. D , H , A >. ) |
11 |
9 10
|
eqtr3d |
|- ( <. D , H , A >. e. S -> <. ( D i^i ( Z X. Z ) ) , H , A >. = <. D , H , A >. ) |
12 |
11
|
fveq2d |
|- ( <. D , H , A >. e. S -> ( 1st ` <. ( D i^i ( Z X. Z ) ) , H , A >. ) = ( 1st ` <. D , H , A >. ) ) |
13 |
12
|
fveq2d |
|- ( <. D , H , A >. e. S -> ( 1st ` ( 1st ` <. ( D i^i ( Z X. Z ) ) , H , A >. ) ) = ( 1st ` ( 1st ` <. D , H , A >. ) ) ) |
14 |
|
inss1 |
|- ( D i^i ( Z X. Z ) ) C_ D |
15 |
1
|
mpstrcl |
|- ( <. D , H , A >. e. P -> ( D e. _V /\ H e. _V /\ A e. _V ) ) |
16 |
6 15
|
syl |
|- ( <. D , H , A >. e. S -> ( D e. _V /\ H e. _V /\ A e. _V ) ) |
17 |
16
|
simp1d |
|- ( <. D , H , A >. e. S -> D e. _V ) |
18 |
|
ssexg |
|- ( ( ( D i^i ( Z X. Z ) ) C_ D /\ D e. _V ) -> ( D i^i ( Z X. Z ) ) e. _V ) |
19 |
14 17 18
|
sylancr |
|- ( <. D , H , A >. e. S -> ( D i^i ( Z X. Z ) ) e. _V ) |
20 |
16
|
simp2d |
|- ( <. D , H , A >. e. S -> H e. _V ) |
21 |
16
|
simp3d |
|- ( <. D , H , A >. e. S -> A e. _V ) |
22 |
|
ot1stg |
|- ( ( ( D i^i ( Z X. Z ) ) e. _V /\ H e. _V /\ A e. _V ) -> ( 1st ` ( 1st ` <. ( D i^i ( Z X. Z ) ) , H , A >. ) ) = ( D i^i ( Z X. Z ) ) ) |
23 |
19 20 21 22
|
syl3anc |
|- ( <. D , H , A >. e. S -> ( 1st ` ( 1st ` <. ( D i^i ( Z X. Z ) ) , H , A >. ) ) = ( D i^i ( Z X. Z ) ) ) |
24 |
|
ot1stg |
|- ( ( D e. _V /\ H e. _V /\ A e. _V ) -> ( 1st ` ( 1st ` <. D , H , A >. ) ) = D ) |
25 |
16 24
|
syl |
|- ( <. D , H , A >. e. S -> ( 1st ` ( 1st ` <. D , H , A >. ) ) = D ) |
26 |
13 23 25
|
3eqtr3d |
|- ( <. D , H , A >. e. S -> ( D i^i ( Z X. Z ) ) = D ) |
27 |
|
inss2 |
|- ( D i^i ( Z X. Z ) ) C_ ( Z X. Z ) |
28 |
26 27
|
eqsstrrdi |
|- ( <. D , H , A >. e. S -> D C_ ( Z X. Z ) ) |
29 |
6 28
|
jca |
|- ( <. D , H , A >. e. S -> ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) ) |
30 |
8
|
adantr |
|- ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> ( ( mStRed ` T ) ` <. D , H , A >. ) = <. ( D i^i ( Z X. Z ) ) , H , A >. ) |
31 |
|
simpr |
|- ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> D C_ ( Z X. Z ) ) |
32 |
|
df-ss |
|- ( D C_ ( Z X. Z ) <-> ( D i^i ( Z X. Z ) ) = D ) |
33 |
31 32
|
sylib |
|- ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> ( D i^i ( Z X. Z ) ) = D ) |
34 |
33
|
oteq1d |
|- ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> <. ( D i^i ( Z X. Z ) ) , H , A >. = <. D , H , A >. ) |
35 |
30 34
|
eqtrd |
|- ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> ( ( mStRed ` T ) ` <. D , H , A >. ) = <. D , H , A >. ) |
36 |
1 7
|
msrf |
|- ( mStRed ` T ) : P --> P |
37 |
|
ffn |
|- ( ( mStRed ` T ) : P --> P -> ( mStRed ` T ) Fn P ) |
38 |
36 37
|
ax-mp |
|- ( mStRed ` T ) Fn P |
39 |
|
simpl |
|- ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> <. D , H , A >. e. P ) |
40 |
|
fnfvelrn |
|- ( ( ( mStRed ` T ) Fn P /\ <. D , H , A >. e. P ) -> ( ( mStRed ` T ) ` <. D , H , A >. ) e. ran ( mStRed ` T ) ) |
41 |
38 39 40
|
sylancr |
|- ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> ( ( mStRed ` T ) ` <. D , H , A >. ) e. ran ( mStRed ` T ) ) |
42 |
35 41
|
eqeltrrd |
|- ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> <. D , H , A >. e. ran ( mStRed ` T ) ) |
43 |
7 2
|
mstaval |
|- S = ran ( mStRed ` T ) |
44 |
42 43
|
eleqtrrdi |
|- ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> <. D , H , A >. e. S ) |
45 |
29 44
|
impbii |
|- ( <. D , H , A >. e. S <-> ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) ) |