Metamath Proof Explorer


Theorem elmsta

Description: Property of being a statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mstapst.p
|- P = ( mPreSt ` T )
mstapst.s
|- S = ( mStat ` T )
elmsta.v
|- V = ( mVars ` T )
elmsta.z
|- Z = U. ( V " ( H u. { A } ) )
Assertion elmsta
|- ( <. D , H , A >. e. S <-> ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) )

Proof

Step Hyp Ref Expression
1 mstapst.p
 |-  P = ( mPreSt ` T )
2 mstapst.s
 |-  S = ( mStat ` T )
3 elmsta.v
 |-  V = ( mVars ` T )
4 elmsta.z
 |-  Z = U. ( V " ( H u. { A } ) )
5 1 2 mstapst
 |-  S C_ P
6 5 sseli
 |-  ( <. D , H , A >. e. S -> <. D , H , A >. e. P )
7 eqid
 |-  ( mStRed ` T ) = ( mStRed ` T )
8 3 1 7 4 msrval
 |-  ( <. D , H , A >. e. P -> ( ( mStRed ` T ) ` <. D , H , A >. ) = <. ( D i^i ( Z X. Z ) ) , H , A >. )
9 6 8 syl
 |-  ( <. D , H , A >. e. S -> ( ( mStRed ` T ) ` <. D , H , A >. ) = <. ( D i^i ( Z X. Z ) ) , H , A >. )
10 7 2 msrid
 |-  ( <. D , H , A >. e. S -> ( ( mStRed ` T ) ` <. D , H , A >. ) = <. D , H , A >. )
11 9 10 eqtr3d
 |-  ( <. D , H , A >. e. S -> <. ( D i^i ( Z X. Z ) ) , H , A >. = <. D , H , A >. )
12 11 fveq2d
 |-  ( <. D , H , A >. e. S -> ( 1st ` <. ( D i^i ( Z X. Z ) ) , H , A >. ) = ( 1st ` <. D , H , A >. ) )
13 12 fveq2d
 |-  ( <. D , H , A >. e. S -> ( 1st ` ( 1st ` <. ( D i^i ( Z X. Z ) ) , H , A >. ) ) = ( 1st ` ( 1st ` <. D , H , A >. ) ) )
14 inss1
 |-  ( D i^i ( Z X. Z ) ) C_ D
15 1 mpstrcl
 |-  ( <. D , H , A >. e. P -> ( D e. _V /\ H e. _V /\ A e. _V ) )
16 6 15 syl
 |-  ( <. D , H , A >. e. S -> ( D e. _V /\ H e. _V /\ A e. _V ) )
17 16 simp1d
 |-  ( <. D , H , A >. e. S -> D e. _V )
18 ssexg
 |-  ( ( ( D i^i ( Z X. Z ) ) C_ D /\ D e. _V ) -> ( D i^i ( Z X. Z ) ) e. _V )
19 14 17 18 sylancr
 |-  ( <. D , H , A >. e. S -> ( D i^i ( Z X. Z ) ) e. _V )
20 16 simp2d
 |-  ( <. D , H , A >. e. S -> H e. _V )
21 16 simp3d
 |-  ( <. D , H , A >. e. S -> A e. _V )
22 ot1stg
 |-  ( ( ( D i^i ( Z X. Z ) ) e. _V /\ H e. _V /\ A e. _V ) -> ( 1st ` ( 1st ` <. ( D i^i ( Z X. Z ) ) , H , A >. ) ) = ( D i^i ( Z X. Z ) ) )
23 19 20 21 22 syl3anc
 |-  ( <. D , H , A >. e. S -> ( 1st ` ( 1st ` <. ( D i^i ( Z X. Z ) ) , H , A >. ) ) = ( D i^i ( Z X. Z ) ) )
24 ot1stg
 |-  ( ( D e. _V /\ H e. _V /\ A e. _V ) -> ( 1st ` ( 1st ` <. D , H , A >. ) ) = D )
25 16 24 syl
 |-  ( <. D , H , A >. e. S -> ( 1st ` ( 1st ` <. D , H , A >. ) ) = D )
26 13 23 25 3eqtr3d
 |-  ( <. D , H , A >. e. S -> ( D i^i ( Z X. Z ) ) = D )
27 inss2
 |-  ( D i^i ( Z X. Z ) ) C_ ( Z X. Z )
28 26 27 eqsstrrdi
 |-  ( <. D , H , A >. e. S -> D C_ ( Z X. Z ) )
29 6 28 jca
 |-  ( <. D , H , A >. e. S -> ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) )
30 8 adantr
 |-  ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> ( ( mStRed ` T ) ` <. D , H , A >. ) = <. ( D i^i ( Z X. Z ) ) , H , A >. )
31 simpr
 |-  ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> D C_ ( Z X. Z ) )
32 df-ss
 |-  ( D C_ ( Z X. Z ) <-> ( D i^i ( Z X. Z ) ) = D )
33 31 32 sylib
 |-  ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> ( D i^i ( Z X. Z ) ) = D )
34 33 oteq1d
 |-  ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> <. ( D i^i ( Z X. Z ) ) , H , A >. = <. D , H , A >. )
35 30 34 eqtrd
 |-  ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> ( ( mStRed ` T ) ` <. D , H , A >. ) = <. D , H , A >. )
36 1 7 msrf
 |-  ( mStRed ` T ) : P --> P
37 ffn
 |-  ( ( mStRed ` T ) : P --> P -> ( mStRed ` T ) Fn P )
38 36 37 ax-mp
 |-  ( mStRed ` T ) Fn P
39 simpl
 |-  ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> <. D , H , A >. e. P )
40 fnfvelrn
 |-  ( ( ( mStRed ` T ) Fn P /\ <. D , H , A >. e. P ) -> ( ( mStRed ` T ) ` <. D , H , A >. ) e. ran ( mStRed ` T ) )
41 38 39 40 sylancr
 |-  ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> ( ( mStRed ` T ) ` <. D , H , A >. ) e. ran ( mStRed ` T ) )
42 35 41 eqeltrrd
 |-  ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> <. D , H , A >. e. ran ( mStRed ` T ) )
43 7 2 mstaval
 |-  S = ran ( mStRed ` T )
44 42 43 eleqtrrdi
 |-  ( ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) -> <. D , H , A >. e. S )
45 29 44 impbii
 |-  ( <. D , H , A >. e. S <-> ( <. D , H , A >. e. P /\ D C_ ( Z X. Z ) ) )