Step |
Hyp |
Ref |
Expression |
1 |
|
msrfval.v |
|- V = ( mVars ` T ) |
2 |
|
msrfval.p |
|- P = ( mPreSt ` T ) |
3 |
|
msrfval.r |
|- R = ( mStRed ` T ) |
4 |
|
msrval.z |
|- Z = U. ( V " ( H u. { A } ) ) |
5 |
1 2 3
|
msrfval |
|- R = ( s e. P |-> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) |
6 |
5
|
a1i |
|- ( <. D , H , A >. e. P -> R = ( s e. P |-> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) ) |
7 |
|
fvexd |
|- ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) -> ( 2nd ` ( 1st ` s ) ) e. _V ) |
8 |
|
fvexd |
|- ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) -> ( 2nd ` s ) e. _V ) |
9 |
|
simpllr |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> s = <. D , H , A >. ) |
10 |
9
|
fveq2d |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> ( 1st ` s ) = ( 1st ` <. D , H , A >. ) ) |
11 |
10
|
fveq2d |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> ( 1st ` ( 1st ` s ) ) = ( 1st ` ( 1st ` <. D , H , A >. ) ) ) |
12 |
|
eqid |
|- ( mDV ` T ) = ( mDV ` T ) |
13 |
|
eqid |
|- ( mEx ` T ) = ( mEx ` T ) |
14 |
12 13 2
|
elmpst |
|- ( <. D , H , A >. e. P <-> ( ( D C_ ( mDV ` T ) /\ `' D = D ) /\ ( H C_ ( mEx ` T ) /\ H e. Fin ) /\ A e. ( mEx ` T ) ) ) |
15 |
14
|
simp1bi |
|- ( <. D , H , A >. e. P -> ( D C_ ( mDV ` T ) /\ `' D = D ) ) |
16 |
15
|
simpld |
|- ( <. D , H , A >. e. P -> D C_ ( mDV ` T ) ) |
17 |
16
|
ad3antrrr |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> D C_ ( mDV ` T ) ) |
18 |
|
fvex |
|- ( mDV ` T ) e. _V |
19 |
18
|
ssex |
|- ( D C_ ( mDV ` T ) -> D e. _V ) |
20 |
17 19
|
syl |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> D e. _V ) |
21 |
14
|
simp2bi |
|- ( <. D , H , A >. e. P -> ( H C_ ( mEx ` T ) /\ H e. Fin ) ) |
22 |
21
|
simprd |
|- ( <. D , H , A >. e. P -> H e. Fin ) |
23 |
22
|
ad3antrrr |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> H e. Fin ) |
24 |
14
|
simp3bi |
|- ( <. D , H , A >. e. P -> A e. ( mEx ` T ) ) |
25 |
24
|
ad3antrrr |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> A e. ( mEx ` T ) ) |
26 |
|
ot1stg |
|- ( ( D e. _V /\ H e. Fin /\ A e. ( mEx ` T ) ) -> ( 1st ` ( 1st ` <. D , H , A >. ) ) = D ) |
27 |
20 23 25 26
|
syl3anc |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> ( 1st ` ( 1st ` <. D , H , A >. ) ) = D ) |
28 |
11 27
|
eqtrd |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> ( 1st ` ( 1st ` s ) ) = D ) |
29 |
1
|
fvexi |
|- V e. _V |
30 |
|
imaexg |
|- ( V e. _V -> ( V " ( h u. { a } ) ) e. _V ) |
31 |
29 30
|
ax-mp |
|- ( V " ( h u. { a } ) ) e. _V |
32 |
31
|
uniex |
|- U. ( V " ( h u. { a } ) ) e. _V |
33 |
32
|
a1i |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> U. ( V " ( h u. { a } ) ) e. _V ) |
34 |
|
id |
|- ( z = U. ( V " ( h u. { a } ) ) -> z = U. ( V " ( h u. { a } ) ) ) |
35 |
|
simplr |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> h = ( 2nd ` ( 1st ` s ) ) ) |
36 |
10
|
fveq2d |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> ( 2nd ` ( 1st ` s ) ) = ( 2nd ` ( 1st ` <. D , H , A >. ) ) ) |
37 |
|
ot2ndg |
|- ( ( D e. _V /\ H e. Fin /\ A e. ( mEx ` T ) ) -> ( 2nd ` ( 1st ` <. D , H , A >. ) ) = H ) |
38 |
20 23 25 37
|
syl3anc |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> ( 2nd ` ( 1st ` <. D , H , A >. ) ) = H ) |
39 |
35 36 38
|
3eqtrd |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> h = H ) |
40 |
|
simpr |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> a = ( 2nd ` s ) ) |
41 |
9
|
fveq2d |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> ( 2nd ` s ) = ( 2nd ` <. D , H , A >. ) ) |
42 |
|
ot3rdg |
|- ( A e. ( mEx ` T ) -> ( 2nd ` <. D , H , A >. ) = A ) |
43 |
25 42
|
syl |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> ( 2nd ` <. D , H , A >. ) = A ) |
44 |
40 41 43
|
3eqtrd |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> a = A ) |
45 |
44
|
sneqd |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> { a } = { A } ) |
46 |
39 45
|
uneq12d |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> ( h u. { a } ) = ( H u. { A } ) ) |
47 |
46
|
imaeq2d |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> ( V " ( h u. { a } ) ) = ( V " ( H u. { A } ) ) ) |
48 |
47
|
unieqd |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> U. ( V " ( h u. { a } ) ) = U. ( V " ( H u. { A } ) ) ) |
49 |
48 4
|
eqtr4di |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> U. ( V " ( h u. { a } ) ) = Z ) |
50 |
34 49
|
sylan9eqr |
|- ( ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) /\ z = U. ( V " ( h u. { a } ) ) ) -> z = Z ) |
51 |
50
|
sqxpeqd |
|- ( ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) /\ z = U. ( V " ( h u. { a } ) ) ) -> ( z X. z ) = ( Z X. Z ) ) |
52 |
33 51
|
csbied |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) = ( Z X. Z ) ) |
53 |
28 52
|
ineq12d |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) = ( D i^i ( Z X. Z ) ) ) |
54 |
53 39 44
|
oteq123d |
|- ( ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) /\ a = ( 2nd ` s ) ) -> <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. = <. ( D i^i ( Z X. Z ) ) , H , A >. ) |
55 |
8 54
|
csbied |
|- ( ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) /\ h = ( 2nd ` ( 1st ` s ) ) ) -> [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. = <. ( D i^i ( Z X. Z ) ) , H , A >. ) |
56 |
7 55
|
csbied |
|- ( ( <. D , H , A >. e. P /\ s = <. D , H , A >. ) -> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. = <. ( D i^i ( Z X. Z ) ) , H , A >. ) |
57 |
|
id |
|- ( <. D , H , A >. e. P -> <. D , H , A >. e. P ) |
58 |
|
otex |
|- <. ( D i^i ( Z X. Z ) ) , H , A >. e. _V |
59 |
58
|
a1i |
|- ( <. D , H , A >. e. P -> <. ( D i^i ( Z X. Z ) ) , H , A >. e. _V ) |
60 |
6 56 57 59
|
fvmptd |
|- ( <. D , H , A >. e. P -> ( R ` <. D , H , A >. ) = <. ( D i^i ( Z X. Z ) ) , H , A >. ) |