Metamath Proof Explorer


Theorem msrval

Description: Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msrfval.v V=mVarsT
msrfval.p P=mPreStT
msrfval.r R=mStRedT
msrval.z Z=VHA
Assertion msrval DHAPRDHA=DZ×ZHA

Proof

Step Hyp Ref Expression
1 msrfval.v V=mVarsT
2 msrfval.p P=mPreStT
3 msrfval.r R=mStRedT
4 msrval.z Z=VHA
5 1 2 3 msrfval R=sP2nd1sts/h2nds/a1st1stsVha/zz×zha
6 5 a1i DHAPR=sP2nd1sts/h2nds/a1st1stsVha/zz×zha
7 fvexd DHAPs=DHA2nd1stsV
8 fvexd DHAPs=DHAh=2nd1sts2ndsV
9 simpllr DHAPs=DHAh=2nd1stsa=2ndss=DHA
10 9 fveq2d DHAPs=DHAh=2nd1stsa=2nds1sts=1stDHA
11 10 fveq2d DHAPs=DHAh=2nd1stsa=2nds1st1sts=1st1stDHA
12 eqid mDVT=mDVT
13 eqid mExT=mExT
14 12 13 2 elmpst DHAPDmDVTD-1=DHmExTHFinAmExT
15 14 simp1bi DHAPDmDVTD-1=D
16 15 simpld DHAPDmDVT
17 16 ad3antrrr DHAPs=DHAh=2nd1stsa=2ndsDmDVT
18 fvex mDVTV
19 18 ssex DmDVTDV
20 17 19 syl DHAPs=DHAh=2nd1stsa=2ndsDV
21 14 simp2bi DHAPHmExTHFin
22 21 simprd DHAPHFin
23 22 ad3antrrr DHAPs=DHAh=2nd1stsa=2ndsHFin
24 14 simp3bi DHAPAmExT
25 24 ad3antrrr DHAPs=DHAh=2nd1stsa=2ndsAmExT
26 ot1stg DVHFinAmExT1st1stDHA=D
27 20 23 25 26 syl3anc DHAPs=DHAh=2nd1stsa=2nds1st1stDHA=D
28 11 27 eqtrd DHAPs=DHAh=2nd1stsa=2nds1st1sts=D
29 1 fvexi VV
30 imaexg VVVhaV
31 29 30 ax-mp VhaV
32 31 uniex VhaV
33 32 a1i DHAPs=DHAh=2nd1stsa=2ndsVhaV
34 id z=Vhaz=Vha
35 simplr DHAPs=DHAh=2nd1stsa=2ndsh=2nd1sts
36 10 fveq2d DHAPs=DHAh=2nd1stsa=2nds2nd1sts=2nd1stDHA
37 ot2ndg DVHFinAmExT2nd1stDHA=H
38 20 23 25 37 syl3anc DHAPs=DHAh=2nd1stsa=2nds2nd1stDHA=H
39 35 36 38 3eqtrd DHAPs=DHAh=2nd1stsa=2ndsh=H
40 simpr DHAPs=DHAh=2nd1stsa=2ndsa=2nds
41 9 fveq2d DHAPs=DHAh=2nd1stsa=2nds2nds=2ndDHA
42 ot3rdg AmExT2ndDHA=A
43 25 42 syl DHAPs=DHAh=2nd1stsa=2nds2ndDHA=A
44 40 41 43 3eqtrd DHAPs=DHAh=2nd1stsa=2ndsa=A
45 44 sneqd DHAPs=DHAh=2nd1stsa=2ndsa=A
46 39 45 uneq12d DHAPs=DHAh=2nd1stsa=2ndsha=HA
47 46 imaeq2d DHAPs=DHAh=2nd1stsa=2ndsVha=VHA
48 47 unieqd DHAPs=DHAh=2nd1stsa=2ndsVha=VHA
49 48 4 eqtr4di DHAPs=DHAh=2nd1stsa=2ndsVha=Z
50 34 49 sylan9eqr DHAPs=DHAh=2nd1stsa=2ndsz=Vhaz=Z
51 50 sqxpeqd DHAPs=DHAh=2nd1stsa=2ndsz=Vhaz×z=Z×Z
52 33 51 csbied DHAPs=DHAh=2nd1stsa=2ndsVha/zz×z=Z×Z
53 28 52 ineq12d DHAPs=DHAh=2nd1stsa=2nds1st1stsVha/zz×z=DZ×Z
54 53 39 44 oteq123d DHAPs=DHAh=2nd1stsa=2nds1st1stsVha/zz×zha=DZ×ZHA
55 8 54 csbied DHAPs=DHAh=2nd1sts2nds/a1st1stsVha/zz×zha=DZ×ZHA
56 7 55 csbied DHAPs=DHA2nd1sts/h2nds/a1st1stsVha/zz×zha=DZ×ZHA
57 id DHAPDHAP
58 otex DZ×ZHAV
59 58 a1i DHAPDZ×ZHAV
60 6 56 57 59 fvmptd DHAPRDHA=DZ×ZHA