Step |
Hyp |
Ref |
Expression |
1 |
|
msrfval.v |
|
2 |
|
msrfval.p |
|
3 |
|
msrfval.r |
|
4 |
|
msrval.z |
|
5 |
1 2 3
|
msrfval |
|
6 |
5
|
a1i |
|
7 |
|
fvexd |
|
8 |
|
fvexd |
|
9 |
|
simpllr |
|
10 |
9
|
fveq2d |
|
11 |
10
|
fveq2d |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
12 13 2
|
elmpst |
|
15 |
14
|
simp1bi |
|
16 |
15
|
simpld |
|
17 |
16
|
ad3antrrr |
|
18 |
|
fvex |
|
19 |
18
|
ssex |
|
20 |
17 19
|
syl |
|
21 |
14
|
simp2bi |
|
22 |
21
|
simprd |
|
23 |
22
|
ad3antrrr |
|
24 |
14
|
simp3bi |
|
25 |
24
|
ad3antrrr |
|
26 |
|
ot1stg |
|
27 |
20 23 25 26
|
syl3anc |
|
28 |
11 27
|
eqtrd |
|
29 |
1
|
fvexi |
|
30 |
|
imaexg |
|
31 |
29 30
|
ax-mp |
|
32 |
31
|
uniex |
|
33 |
32
|
a1i |
|
34 |
|
id |
|
35 |
|
simplr |
|
36 |
10
|
fveq2d |
|
37 |
|
ot2ndg |
|
38 |
20 23 25 37
|
syl3anc |
|
39 |
35 36 38
|
3eqtrd |
|
40 |
|
simpr |
|
41 |
9
|
fveq2d |
|
42 |
|
ot3rdg |
|
43 |
25 42
|
syl |
|
44 |
40 41 43
|
3eqtrd |
|
45 |
44
|
sneqd |
|
46 |
39 45
|
uneq12d |
|
47 |
46
|
imaeq2d |
|
48 |
47
|
unieqd |
|
49 |
48 4
|
eqtr4di |
|
50 |
34 49
|
sylan9eqr |
|
51 |
50
|
sqxpeqd |
|
52 |
33 51
|
csbied |
|
53 |
28 52
|
ineq12d |
|
54 |
53 39 44
|
oteq123d |
|
55 |
8 54
|
csbied |
|
56 |
7 55
|
csbied |
|
57 |
|
id |
|
58 |
|
otex |
|
59 |
58
|
a1i |
|
60 |
6 56 57 59
|
fvmptd |
|