Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Metamath formal systems
mpstssv
Next ⟩
mpst123
Metamath Proof Explorer
Ascii
Unicode
Theorem
mpstssv
Description:
A pre-statement is an ordered triple.
(Contributed by
Mario Carneiro
, 18-Jul-2016)
Ref
Expression
Hypothesis
mpstssv.p
⊢
P
=
mPreSt
⁡
T
Assertion
mpstssv
⊢
P
⊆
V
×
V
×
V
Proof
Step
Hyp
Ref
Expression
1
mpstssv.p
⊢
P
=
mPreSt
⁡
T
2
eqid
⊢
mDV
⁡
T
=
mDV
⁡
T
3
eqid
⊢
mEx
⁡
T
=
mEx
⁡
T
4
2
3
1
mpstval
⊢
P
=
d
∈
𝒫
mDV
⁡
T
|
d
-1
=
d
×
𝒫
mEx
⁡
T
∩
Fin
×
mEx
⁡
T
5
xpss
⊢
d
∈
𝒫
mDV
⁡
T
|
d
-1
=
d
×
𝒫
mEx
⁡
T
∩
Fin
⊆
V
×
V
6
ssv
⊢
mEx
⁡
T
⊆
V
7
xpss12
⊢
d
∈
𝒫
mDV
⁡
T
|
d
-1
=
d
×
𝒫
mEx
⁡
T
∩
Fin
⊆
V
×
V
∧
mEx
⁡
T
⊆
V
→
d
∈
𝒫
mDV
⁡
T
|
d
-1
=
d
×
𝒫
mEx
⁡
T
∩
Fin
×
mEx
⁡
T
⊆
V
×
V
×
V
8
5
6
7
mp2an
⊢
d
∈
𝒫
mDV
⁡
T
|
d
-1
=
d
×
𝒫
mEx
⁡
T
∩
Fin
×
mEx
⁡
T
⊆
V
×
V
×
V
9
4
8
eqsstri
⊢
P
⊆
V
×
V
×
V