Metamath Proof Explorer


Theorem mpstssv

Description: A pre-statement is an ordered triple. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypothesis mpstssv.p P = mPreSt T
Assertion mpstssv P V × V × V

Proof

Step Hyp Ref Expression
1 mpstssv.p P = mPreSt T
2 eqid mDV T = mDV T
3 eqid mEx T = mEx T
4 2 3 1 mpstval P = d 𝒫 mDV T | d -1 = d × 𝒫 mEx T Fin × mEx T
5 xpss d 𝒫 mDV T | d -1 = d × 𝒫 mEx T Fin V × V
6 ssv mEx T V
7 xpss12 d 𝒫 mDV T | d -1 = d × 𝒫 mEx T Fin V × V mEx T V d 𝒫 mDV T | d -1 = d × 𝒫 mEx T Fin × mEx T V × V × V
8 5 6 7 mp2an d 𝒫 mDV T | d -1 = d × 𝒫 mEx T Fin × mEx T V × V × V
9 4 8 eqsstri P V × V × V