Metamath Proof Explorer


Theorem mpstval

Description: A pre-statement is an ordered triple, whose first member is a symmetric set of disjoint variable conditions, whose second member is a finite set of expressions, and whose third member is an expression. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mpstval.v V = mDV T
mpstval.e E = mEx T
mpstval.p P = mPreSt T
Assertion mpstval P = d 𝒫 V | d -1 = d × 𝒫 E Fin × E

Proof

Step Hyp Ref Expression
1 mpstval.v V = mDV T
2 mpstval.e E = mEx T
3 mpstval.p P = mPreSt T
4 fveq2 t = T mDV t = mDV T
5 4 1 eqtr4di t = T mDV t = V
6 5 pweqd t = T 𝒫 mDV t = 𝒫 V
7 6 rabeqdv t = T d 𝒫 mDV t | d -1 = d = d 𝒫 V | d -1 = d
8 fveq2 t = T mEx t = mEx T
9 8 2 eqtr4di t = T mEx t = E
10 9 pweqd t = T 𝒫 mEx t = 𝒫 E
11 10 ineq1d t = T 𝒫 mEx t Fin = 𝒫 E Fin
12 7 11 xpeq12d t = T d 𝒫 mDV t | d -1 = d × 𝒫 mEx t Fin = d 𝒫 V | d -1 = d × 𝒫 E Fin
13 12 9 xpeq12d t = T d 𝒫 mDV t | d -1 = d × 𝒫 mEx t Fin × mEx t = d 𝒫 V | d -1 = d × 𝒫 E Fin × E
14 df-mpst mPreSt = t V d 𝒫 mDV t | d -1 = d × 𝒫 mEx t Fin × mEx t
15 1 fvexi V V
16 15 pwex 𝒫 V V
17 16 rabex d 𝒫 V | d -1 = d V
18 2 fvexi E V
19 18 pwex 𝒫 E V
20 19 inex1 𝒫 E Fin V
21 17 20 xpex d 𝒫 V | d -1 = d × 𝒫 E Fin V
22 21 18 xpex d 𝒫 V | d -1 = d × 𝒫 E Fin × E V
23 13 14 22 fvmpt T V mPreSt T = d 𝒫 V | d -1 = d × 𝒫 E Fin × E
24 xp0 d 𝒫 V | d -1 = d × 𝒫 E Fin × =
25 24 eqcomi = d 𝒫 V | d -1 = d × 𝒫 E Fin ×
26 fvprc ¬ T V mPreSt T =
27 fvprc ¬ T V mEx T =
28 2 27 syl5eq ¬ T V E =
29 28 xpeq2d ¬ T V d 𝒫 V | d -1 = d × 𝒫 E Fin × E = d 𝒫 V | d -1 = d × 𝒫 E Fin ×
30 25 26 29 3eqtr4a ¬ T V mPreSt T = d 𝒫 V | d -1 = d × 𝒫 E Fin × E
31 23 30 pm2.61i mPreSt T = d 𝒫 V | d -1 = d × 𝒫 E Fin × E
32 3 31 eqtri P = d 𝒫 V | d -1 = d × 𝒫 E Fin × E