Step |
Hyp |
Ref |
Expression |
1 |
|
mpstval.v |
⊢ 𝑉 = ( mDV ‘ 𝑇 ) |
2 |
|
mpstval.e |
⊢ 𝐸 = ( mEx ‘ 𝑇 ) |
3 |
|
mpstval.p |
⊢ 𝑃 = ( mPreSt ‘ 𝑇 ) |
4 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mDV ‘ 𝑡 ) = ( mDV ‘ 𝑇 ) ) |
5 |
4 1
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mDV ‘ 𝑡 ) = 𝑉 ) |
6 |
5
|
pweqd |
⊢ ( 𝑡 = 𝑇 → 𝒫 ( mDV ‘ 𝑡 ) = 𝒫 𝑉 ) |
7 |
6
|
rabeqdv |
⊢ ( 𝑡 = 𝑇 → { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ ◡ 𝑑 = 𝑑 } = { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } ) |
8 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mEx ‘ 𝑡 ) = ( mEx ‘ 𝑇 ) ) |
9 |
8 2
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mEx ‘ 𝑡 ) = 𝐸 ) |
10 |
9
|
pweqd |
⊢ ( 𝑡 = 𝑇 → 𝒫 ( mEx ‘ 𝑡 ) = 𝒫 𝐸 ) |
11 |
10
|
ineq1d |
⊢ ( 𝑡 = 𝑇 → ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) = ( 𝒫 𝐸 ∩ Fin ) ) |
12 |
7 11
|
xpeq12d |
⊢ ( 𝑡 = 𝑇 → ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) ) = ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) ) |
13 |
12 9
|
xpeq12d |
⊢ ( 𝑡 = 𝑇 → ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) ) × ( mEx ‘ 𝑡 ) ) = ( ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 ) ) |
14 |
|
df-mpst |
⊢ mPreSt = ( 𝑡 ∈ V ↦ ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) ) × ( mEx ‘ 𝑡 ) ) ) |
15 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
16 |
15
|
pwex |
⊢ 𝒫 𝑉 ∈ V |
17 |
16
|
rabex |
⊢ { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } ∈ V |
18 |
2
|
fvexi |
⊢ 𝐸 ∈ V |
19 |
18
|
pwex |
⊢ 𝒫 𝐸 ∈ V |
20 |
19
|
inex1 |
⊢ ( 𝒫 𝐸 ∩ Fin ) ∈ V |
21 |
17 20
|
xpex |
⊢ ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) ∈ V |
22 |
21 18
|
xpex |
⊢ ( ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 ) ∈ V |
23 |
13 14 22
|
fvmpt |
⊢ ( 𝑇 ∈ V → ( mPreSt ‘ 𝑇 ) = ( ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 ) ) |
24 |
|
xp0 |
⊢ ( ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × ∅ ) = ∅ |
25 |
24
|
eqcomi |
⊢ ∅ = ( ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × ∅ ) |
26 |
|
fvprc |
⊢ ( ¬ 𝑇 ∈ V → ( mPreSt ‘ 𝑇 ) = ∅ ) |
27 |
|
fvprc |
⊢ ( ¬ 𝑇 ∈ V → ( mEx ‘ 𝑇 ) = ∅ ) |
28 |
2 27
|
syl5eq |
⊢ ( ¬ 𝑇 ∈ V → 𝐸 = ∅ ) |
29 |
28
|
xpeq2d |
⊢ ( ¬ 𝑇 ∈ V → ( ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 ) = ( ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × ∅ ) ) |
30 |
25 26 29
|
3eqtr4a |
⊢ ( ¬ 𝑇 ∈ V → ( mPreSt ‘ 𝑇 ) = ( ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 ) ) |
31 |
23 30
|
pm2.61i |
⊢ ( mPreSt ‘ 𝑇 ) = ( ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 ) |
32 |
3 31
|
eqtri |
⊢ 𝑃 = ( ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 ) |