Metamath Proof Explorer


Theorem mpstval

Description: A pre-statement is an ordered triple, whose first member is a symmetric set of disjoint variable conditions, whose second member is a finite set of expressions, and whose third member is an expression. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mpstval.v 𝑉 = ( mDV ‘ 𝑇 )
mpstval.e 𝐸 = ( mEx ‘ 𝑇 )
mpstval.p 𝑃 = ( mPreSt ‘ 𝑇 )
Assertion mpstval 𝑃 = ( ( { 𝑑 ∈ 𝒫 𝑉 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 )

Proof

Step Hyp Ref Expression
1 mpstval.v 𝑉 = ( mDV ‘ 𝑇 )
2 mpstval.e 𝐸 = ( mEx ‘ 𝑇 )
3 mpstval.p 𝑃 = ( mPreSt ‘ 𝑇 )
4 fveq2 ( 𝑡 = 𝑇 → ( mDV ‘ 𝑡 ) = ( mDV ‘ 𝑇 ) )
5 4 1 eqtr4di ( 𝑡 = 𝑇 → ( mDV ‘ 𝑡 ) = 𝑉 )
6 5 pweqd ( 𝑡 = 𝑇 → 𝒫 ( mDV ‘ 𝑡 ) = 𝒫 𝑉 )
7 6 rabeqdv ( 𝑡 = 𝑇 → { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ 𝑑 = 𝑑 } = { 𝑑 ∈ 𝒫 𝑉 𝑑 = 𝑑 } )
8 fveq2 ( 𝑡 = 𝑇 → ( mEx ‘ 𝑡 ) = ( mEx ‘ 𝑇 ) )
9 8 2 eqtr4di ( 𝑡 = 𝑇 → ( mEx ‘ 𝑡 ) = 𝐸 )
10 9 pweqd ( 𝑡 = 𝑇 → 𝒫 ( mEx ‘ 𝑡 ) = 𝒫 𝐸 )
11 10 ineq1d ( 𝑡 = 𝑇 → ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) = ( 𝒫 𝐸 ∩ Fin ) )
12 7 11 xpeq12d ( 𝑡 = 𝑇 → ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) ) = ( { 𝑑 ∈ 𝒫 𝑉 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) )
13 12 9 xpeq12d ( 𝑡 = 𝑇 → ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) ) × ( mEx ‘ 𝑡 ) ) = ( ( { 𝑑 ∈ 𝒫 𝑉 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 ) )
14 df-mpst mPreSt = ( 𝑡 ∈ V ↦ ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) ) × ( mEx ‘ 𝑡 ) ) )
15 1 fvexi 𝑉 ∈ V
16 15 pwex 𝒫 𝑉 ∈ V
17 16 rabex { 𝑑 ∈ 𝒫 𝑉 𝑑 = 𝑑 } ∈ V
18 2 fvexi 𝐸 ∈ V
19 18 pwex 𝒫 𝐸 ∈ V
20 19 inex1 ( 𝒫 𝐸 ∩ Fin ) ∈ V
21 17 20 xpex ( { 𝑑 ∈ 𝒫 𝑉 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) ∈ V
22 21 18 xpex ( ( { 𝑑 ∈ 𝒫 𝑉 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 ) ∈ V
23 13 14 22 fvmpt ( 𝑇 ∈ V → ( mPreSt ‘ 𝑇 ) = ( ( { 𝑑 ∈ 𝒫 𝑉 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 ) )
24 xp0 ( ( { 𝑑 ∈ 𝒫 𝑉 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × ∅ ) = ∅
25 24 eqcomi ∅ = ( ( { 𝑑 ∈ 𝒫 𝑉 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × ∅ )
26 fvprc ( ¬ 𝑇 ∈ V → ( mPreSt ‘ 𝑇 ) = ∅ )
27 fvprc ( ¬ 𝑇 ∈ V → ( mEx ‘ 𝑇 ) = ∅ )
28 2 27 syl5eq ( ¬ 𝑇 ∈ V → 𝐸 = ∅ )
29 28 xpeq2d ( ¬ 𝑇 ∈ V → ( ( { 𝑑 ∈ 𝒫 𝑉 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 ) = ( ( { 𝑑 ∈ 𝒫 𝑉 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × ∅ ) )
30 25 26 29 3eqtr4a ( ¬ 𝑇 ∈ V → ( mPreSt ‘ 𝑇 ) = ( ( { 𝑑 ∈ 𝒫 𝑉 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 ) )
31 23 30 pm2.61i ( mPreSt ‘ 𝑇 ) = ( ( { 𝑑 ∈ 𝒫 𝑉 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 )
32 3 31 eqtri 𝑃 = ( ( { 𝑑 ∈ 𝒫 𝑉 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 )