Step |
Hyp |
Ref |
Expression |
1 |
|
mpstval.v |
⊢ 𝑉 = ( mDV ‘ 𝑇 ) |
2 |
|
mpstval.e |
⊢ 𝐸 = ( mEx ‘ 𝑇 ) |
3 |
|
mpstval.p |
⊢ 𝑃 = ( mPreSt ‘ 𝑇 ) |
4 |
|
opelxp |
⊢ ( 〈 〈 𝐷 , 𝐻 〉 , 𝐴 〉 ∈ ( ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 ) ↔ ( 〈 𝐷 , 𝐻 〉 ∈ ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) ∧ 𝐴 ∈ 𝐸 ) ) |
5 |
|
opelxp |
⊢ ( 〈 𝐷 , 𝐻 〉 ∈ ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) ↔ ( 𝐷 ∈ { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } ∧ 𝐻 ∈ ( 𝒫 𝐸 ∩ Fin ) ) ) |
6 |
|
cnveq |
⊢ ( 𝑑 = 𝐷 → ◡ 𝑑 = ◡ 𝐷 ) |
7 |
|
id |
⊢ ( 𝑑 = 𝐷 → 𝑑 = 𝐷 ) |
8 |
6 7
|
eqeq12d |
⊢ ( 𝑑 = 𝐷 → ( ◡ 𝑑 = 𝑑 ↔ ◡ 𝐷 = 𝐷 ) ) |
9 |
8
|
elrab |
⊢ ( 𝐷 ∈ { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } ↔ ( 𝐷 ∈ 𝒫 𝑉 ∧ ◡ 𝐷 = 𝐷 ) ) |
10 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
11 |
10
|
elpw2 |
⊢ ( 𝐷 ∈ 𝒫 𝑉 ↔ 𝐷 ⊆ 𝑉 ) |
12 |
11
|
anbi1i |
⊢ ( ( 𝐷 ∈ 𝒫 𝑉 ∧ ◡ 𝐷 = 𝐷 ) ↔ ( 𝐷 ⊆ 𝑉 ∧ ◡ 𝐷 = 𝐷 ) ) |
13 |
9 12
|
bitri |
⊢ ( 𝐷 ∈ { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } ↔ ( 𝐷 ⊆ 𝑉 ∧ ◡ 𝐷 = 𝐷 ) ) |
14 |
|
elfpw |
⊢ ( 𝐻 ∈ ( 𝒫 𝐸 ∩ Fin ) ↔ ( 𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin ) ) |
15 |
13 14
|
anbi12i |
⊢ ( ( 𝐷 ∈ { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } ∧ 𝐻 ∈ ( 𝒫 𝐸 ∩ Fin ) ) ↔ ( ( 𝐷 ⊆ 𝑉 ∧ ◡ 𝐷 = 𝐷 ) ∧ ( 𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin ) ) ) |
16 |
5 15
|
bitri |
⊢ ( 〈 𝐷 , 𝐻 〉 ∈ ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) ↔ ( ( 𝐷 ⊆ 𝑉 ∧ ◡ 𝐷 = 𝐷 ) ∧ ( 𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin ) ) ) |
17 |
16
|
anbi1i |
⊢ ( ( 〈 𝐷 , 𝐻 〉 ∈ ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) ∧ 𝐴 ∈ 𝐸 ) ↔ ( ( ( 𝐷 ⊆ 𝑉 ∧ ◡ 𝐷 = 𝐷 ) ∧ ( 𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin ) ) ∧ 𝐴 ∈ 𝐸 ) ) |
18 |
4 17
|
bitri |
⊢ ( 〈 〈 𝐷 , 𝐻 〉 , 𝐴 〉 ∈ ( ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 ) ↔ ( ( ( 𝐷 ⊆ 𝑉 ∧ ◡ 𝐷 = 𝐷 ) ∧ ( 𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin ) ) ∧ 𝐴 ∈ 𝐸 ) ) |
19 |
|
df-ot |
⊢ 〈 𝐷 , 𝐻 , 𝐴 〉 = 〈 〈 𝐷 , 𝐻 〉 , 𝐴 〉 |
20 |
1 2 3
|
mpstval |
⊢ 𝑃 = ( ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 ) |
21 |
19 20
|
eleq12i |
⊢ ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ↔ 〈 〈 𝐷 , 𝐻 〉 , 𝐴 〉 ∈ ( ( { 𝑑 ∈ 𝒫 𝑉 ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 𝐸 ∩ Fin ) ) × 𝐸 ) ) |
22 |
|
df-3an |
⊢ ( ( ( 𝐷 ⊆ 𝑉 ∧ ◡ 𝐷 = 𝐷 ) ∧ ( 𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin ) ∧ 𝐴 ∈ 𝐸 ) ↔ ( ( ( 𝐷 ⊆ 𝑉 ∧ ◡ 𝐷 = 𝐷 ) ∧ ( 𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin ) ) ∧ 𝐴 ∈ 𝐸 ) ) |
23 |
18 21 22
|
3bitr4i |
⊢ ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ↔ ( ( 𝐷 ⊆ 𝑉 ∧ ◡ 𝐷 = 𝐷 ) ∧ ( 𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin ) ∧ 𝐴 ∈ 𝐸 ) ) |