Step |
Hyp |
Ref |
Expression |
1 |
|
mpstval.v |
|- V = ( mDV ` T ) |
2 |
|
mpstval.e |
|- E = ( mEx ` T ) |
3 |
|
mpstval.p |
|- P = ( mPreSt ` T ) |
4 |
|
opelxp |
|- ( <. <. D , H >. , A >. e. ( ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) X. E ) <-> ( <. D , H >. e. ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) /\ A e. E ) ) |
5 |
|
opelxp |
|- ( <. D , H >. e. ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) <-> ( D e. { d e. ~P V | `' d = d } /\ H e. ( ~P E i^i Fin ) ) ) |
6 |
|
cnveq |
|- ( d = D -> `' d = `' D ) |
7 |
|
id |
|- ( d = D -> d = D ) |
8 |
6 7
|
eqeq12d |
|- ( d = D -> ( `' d = d <-> `' D = D ) ) |
9 |
8
|
elrab |
|- ( D e. { d e. ~P V | `' d = d } <-> ( D e. ~P V /\ `' D = D ) ) |
10 |
1
|
fvexi |
|- V e. _V |
11 |
10
|
elpw2 |
|- ( D e. ~P V <-> D C_ V ) |
12 |
11
|
anbi1i |
|- ( ( D e. ~P V /\ `' D = D ) <-> ( D C_ V /\ `' D = D ) ) |
13 |
9 12
|
bitri |
|- ( D e. { d e. ~P V | `' d = d } <-> ( D C_ V /\ `' D = D ) ) |
14 |
|
elfpw |
|- ( H e. ( ~P E i^i Fin ) <-> ( H C_ E /\ H e. Fin ) ) |
15 |
13 14
|
anbi12i |
|- ( ( D e. { d e. ~P V | `' d = d } /\ H e. ( ~P E i^i Fin ) ) <-> ( ( D C_ V /\ `' D = D ) /\ ( H C_ E /\ H e. Fin ) ) ) |
16 |
5 15
|
bitri |
|- ( <. D , H >. e. ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) <-> ( ( D C_ V /\ `' D = D ) /\ ( H C_ E /\ H e. Fin ) ) ) |
17 |
16
|
anbi1i |
|- ( ( <. D , H >. e. ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) /\ A e. E ) <-> ( ( ( D C_ V /\ `' D = D ) /\ ( H C_ E /\ H e. Fin ) ) /\ A e. E ) ) |
18 |
4 17
|
bitri |
|- ( <. <. D , H >. , A >. e. ( ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) X. E ) <-> ( ( ( D C_ V /\ `' D = D ) /\ ( H C_ E /\ H e. Fin ) ) /\ A e. E ) ) |
19 |
|
df-ot |
|- <. D , H , A >. = <. <. D , H >. , A >. |
20 |
1 2 3
|
mpstval |
|- P = ( ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) X. E ) |
21 |
19 20
|
eleq12i |
|- ( <. D , H , A >. e. P <-> <. <. D , H >. , A >. e. ( ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) X. E ) ) |
22 |
|
df-3an |
|- ( ( ( D C_ V /\ `' D = D ) /\ ( H C_ E /\ H e. Fin ) /\ A e. E ) <-> ( ( ( D C_ V /\ `' D = D ) /\ ( H C_ E /\ H e. Fin ) ) /\ A e. E ) ) |
23 |
18 21 22
|
3bitr4i |
|- ( <. D , H , A >. e. P <-> ( ( D C_ V /\ `' D = D ) /\ ( H C_ E /\ H e. Fin ) /\ A e. E ) ) |