| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpstval.v |
|- V = ( mDV ` T ) |
| 2 |
|
mpstval.e |
|- E = ( mEx ` T ) |
| 3 |
|
mpstval.p |
|- P = ( mPreSt ` T ) |
| 4 |
|
fveq2 |
|- ( t = T -> ( mDV ` t ) = ( mDV ` T ) ) |
| 5 |
4 1
|
eqtr4di |
|- ( t = T -> ( mDV ` t ) = V ) |
| 6 |
5
|
pweqd |
|- ( t = T -> ~P ( mDV ` t ) = ~P V ) |
| 7 |
6
|
rabeqdv |
|- ( t = T -> { d e. ~P ( mDV ` t ) | `' d = d } = { d e. ~P V | `' d = d } ) |
| 8 |
|
fveq2 |
|- ( t = T -> ( mEx ` t ) = ( mEx ` T ) ) |
| 9 |
8 2
|
eqtr4di |
|- ( t = T -> ( mEx ` t ) = E ) |
| 10 |
9
|
pweqd |
|- ( t = T -> ~P ( mEx ` t ) = ~P E ) |
| 11 |
10
|
ineq1d |
|- ( t = T -> ( ~P ( mEx ` t ) i^i Fin ) = ( ~P E i^i Fin ) ) |
| 12 |
7 11
|
xpeq12d |
|- ( t = T -> ( { d e. ~P ( mDV ` t ) | `' d = d } X. ( ~P ( mEx ` t ) i^i Fin ) ) = ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) ) |
| 13 |
12 9
|
xpeq12d |
|- ( t = T -> ( ( { d e. ~P ( mDV ` t ) | `' d = d } X. ( ~P ( mEx ` t ) i^i Fin ) ) X. ( mEx ` t ) ) = ( ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) X. E ) ) |
| 14 |
|
df-mpst |
|- mPreSt = ( t e. _V |-> ( ( { d e. ~P ( mDV ` t ) | `' d = d } X. ( ~P ( mEx ` t ) i^i Fin ) ) X. ( mEx ` t ) ) ) |
| 15 |
1
|
fvexi |
|- V e. _V |
| 16 |
15
|
pwex |
|- ~P V e. _V |
| 17 |
16
|
rabex |
|- { d e. ~P V | `' d = d } e. _V |
| 18 |
2
|
fvexi |
|- E e. _V |
| 19 |
18
|
pwex |
|- ~P E e. _V |
| 20 |
19
|
inex1 |
|- ( ~P E i^i Fin ) e. _V |
| 21 |
17 20
|
xpex |
|- ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) e. _V |
| 22 |
21 18
|
xpex |
|- ( ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) X. E ) e. _V |
| 23 |
13 14 22
|
fvmpt |
|- ( T e. _V -> ( mPreSt ` T ) = ( ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) X. E ) ) |
| 24 |
|
xp0 |
|- ( ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) X. (/) ) = (/) |
| 25 |
24
|
eqcomi |
|- (/) = ( ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) X. (/) ) |
| 26 |
|
fvprc |
|- ( -. T e. _V -> ( mPreSt ` T ) = (/) ) |
| 27 |
|
fvprc |
|- ( -. T e. _V -> ( mEx ` T ) = (/) ) |
| 28 |
2 27
|
eqtrid |
|- ( -. T e. _V -> E = (/) ) |
| 29 |
28
|
xpeq2d |
|- ( -. T e. _V -> ( ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) X. E ) = ( ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) X. (/) ) ) |
| 30 |
25 26 29
|
3eqtr4a |
|- ( -. T e. _V -> ( mPreSt ` T ) = ( ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) X. E ) ) |
| 31 |
23 30
|
pm2.61i |
|- ( mPreSt ` T ) = ( ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) X. E ) |
| 32 |
3 31
|
eqtri |
|- P = ( ( { d e. ~P V | `' d = d } X. ( ~P E i^i Fin ) ) X. E ) |