Step |
Hyp |
Ref |
Expression |
1 |
|
msrfval.v |
|- V = ( mVars ` T ) |
2 |
|
msrfval.p |
|- P = ( mPreSt ` T ) |
3 |
|
msrfval.r |
|- R = ( mStRed ` T ) |
4 |
|
fveq2 |
|- ( t = T -> ( mPreSt ` t ) = ( mPreSt ` T ) ) |
5 |
4 2
|
eqtr4di |
|- ( t = T -> ( mPreSt ` t ) = P ) |
6 |
|
fveq2 |
|- ( t = T -> ( mVars ` t ) = ( mVars ` T ) ) |
7 |
6 1
|
eqtr4di |
|- ( t = T -> ( mVars ` t ) = V ) |
8 |
7
|
imaeq1d |
|- ( t = T -> ( ( mVars ` t ) " ( h u. { a } ) ) = ( V " ( h u. { a } ) ) ) |
9 |
8
|
unieqd |
|- ( t = T -> U. ( ( mVars ` t ) " ( h u. { a } ) ) = U. ( V " ( h u. { a } ) ) ) |
10 |
9
|
csbeq1d |
|- ( t = T -> [_ U. ( ( mVars ` t ) " ( h u. { a } ) ) / z ]_ ( z X. z ) = [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) |
11 |
10
|
ineq2d |
|- ( t = T -> ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( ( mVars ` t ) " ( h u. { a } ) ) / z ]_ ( z X. z ) ) = ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) ) |
12 |
11
|
oteq1d |
|- ( t = T -> <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( ( mVars ` t ) " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. = <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) |
13 |
12
|
csbeq2dv |
|- ( t = T -> [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( ( mVars ` t ) " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. = [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) |
14 |
13
|
csbeq2dv |
|- ( t = T -> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( ( mVars ` t ) " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. = [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) |
15 |
5 14
|
mpteq12dv |
|- ( t = T -> ( s e. ( mPreSt ` t ) |-> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( ( mVars ` t ) " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) = ( s e. P |-> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) ) |
16 |
|
df-msr |
|- mStRed = ( t e. _V |-> ( s e. ( mPreSt ` t ) |-> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( ( mVars ` t ) " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) ) |
17 |
15 16 2
|
mptfvmpt |
|- ( T e. _V -> ( mStRed ` T ) = ( s e. P |-> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) ) |
18 |
|
mpt0 |
|- ( s e. (/) |-> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) = (/) |
19 |
18
|
eqcomi |
|- (/) = ( s e. (/) |-> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) |
20 |
|
fvprc |
|- ( -. T e. _V -> ( mStRed ` T ) = (/) ) |
21 |
|
fvprc |
|- ( -. T e. _V -> ( mPreSt ` T ) = (/) ) |
22 |
2 21
|
syl5eq |
|- ( -. T e. _V -> P = (/) ) |
23 |
22
|
mpteq1d |
|- ( -. T e. _V -> ( s e. P |-> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) = ( s e. (/) |-> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) ) |
24 |
19 20 23
|
3eqtr4a |
|- ( -. T e. _V -> ( mStRed ` T ) = ( s e. P |-> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) ) |
25 |
17 24
|
pm2.61i |
|- ( mStRed ` T ) = ( s e. P |-> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) |
26 |
3 25
|
eqtri |
|- R = ( s e. P |-> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( V " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) |