Metamath Proof Explorer


Theorem msrfval

Description: Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msrfval.v V=mVarsT
msrfval.p P=mPreStT
msrfval.r R=mStRedT
Assertion msrfval R=sP2nd1sts/h2nds/a1st1stsVha/zz×zha

Proof

Step Hyp Ref Expression
1 msrfval.v V=mVarsT
2 msrfval.p P=mPreStT
3 msrfval.r R=mStRedT
4 fveq2 t=TmPreStt=mPreStT
5 4 2 eqtr4di t=TmPreStt=P
6 fveq2 t=TmVarst=mVarsT
7 6 1 eqtr4di t=TmVarst=V
8 7 imaeq1d t=TmVarstha=Vha
9 8 unieqd t=TmVarstha=Vha
10 9 csbeq1d t=TmVarstha/zz×z=Vha/zz×z
11 10 ineq2d t=T1st1stsmVarstha/zz×z=1st1stsVha/zz×z
12 11 oteq1d t=T1st1stsmVarstha/zz×zha=1st1stsVha/zz×zha
13 12 csbeq2dv t=T2nds/a1st1stsmVarstha/zz×zha=2nds/a1st1stsVha/zz×zha
14 13 csbeq2dv t=T2nd1sts/h2nds/a1st1stsmVarstha/zz×zha=2nd1sts/h2nds/a1st1stsVha/zz×zha
15 5 14 mpteq12dv t=TsmPreStt2nd1sts/h2nds/a1st1stsmVarstha/zz×zha=sP2nd1sts/h2nds/a1st1stsVha/zz×zha
16 df-msr mStRed=tVsmPreStt2nd1sts/h2nds/a1st1stsmVarstha/zz×zha
17 15 16 2 mptfvmpt TVmStRedT=sP2nd1sts/h2nds/a1st1stsVha/zz×zha
18 mpt0 s2nd1sts/h2nds/a1st1stsVha/zz×zha=
19 18 eqcomi =s2nd1sts/h2nds/a1st1stsVha/zz×zha
20 fvprc ¬TVmStRedT=
21 fvprc ¬TVmPreStT=
22 2 21 eqtrid ¬TVP=
23 22 mpteq1d ¬TVsP2nd1sts/h2nds/a1st1stsVha/zz×zha=s2nd1sts/h2nds/a1st1stsVha/zz×zha
24 19 20 23 3eqtr4a ¬TVmStRedT=sP2nd1sts/h2nds/a1st1stsVha/zz×zha
25 17 24 pm2.61i mStRedT=sP2nd1sts/h2nds/a1st1stsVha/zz×zha
26 3 25 eqtri R=sP2nd1sts/h2nds/a1st1stsVha/zz×zha