Metamath Proof Explorer


Theorem mpstssv

Description: A pre-statement is an ordered triple. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypothesis mpstssv.p 𝑃 = ( mPreSt ‘ 𝑇 )
Assertion mpstssv 𝑃 ⊆ ( ( V × V ) × V )

Proof

Step Hyp Ref Expression
1 mpstssv.p 𝑃 = ( mPreSt ‘ 𝑇 )
2 eqid ( mDV ‘ 𝑇 ) = ( mDV ‘ 𝑇 )
3 eqid ( mEx ‘ 𝑇 ) = ( mEx ‘ 𝑇 )
4 2 3 1 mpstval 𝑃 = ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑇 ) ∣ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑇 ) ∩ Fin ) ) × ( mEx ‘ 𝑇 ) )
5 xpss ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑇 ) ∣ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑇 ) ∩ Fin ) ) ⊆ ( V × V )
6 ssv ( mEx ‘ 𝑇 ) ⊆ V
7 xpss12 ( ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑇 ) ∣ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑇 ) ∩ Fin ) ) ⊆ ( V × V ) ∧ ( mEx ‘ 𝑇 ) ⊆ V ) → ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑇 ) ∣ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑇 ) ∩ Fin ) ) × ( mEx ‘ 𝑇 ) ) ⊆ ( ( V × V ) × V ) )
8 5 6 7 mp2an ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑇 ) ∣ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑇 ) ∩ Fin ) ) × ( mEx ‘ 𝑇 ) ) ⊆ ( ( V × V ) × V )
9 4 8 eqsstri 𝑃 ⊆ ( ( V × V ) × V )