| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpstssv.p |
⊢ 𝑃 = ( mPreSt ‘ 𝑇 ) |
| 2 |
|
eqid |
⊢ ( mDV ‘ 𝑇 ) = ( mDV ‘ 𝑇 ) |
| 3 |
|
eqid |
⊢ ( mEx ‘ 𝑇 ) = ( mEx ‘ 𝑇 ) |
| 4 |
2 3 1
|
mpstval |
⊢ 𝑃 = ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑇 ) ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑇 ) ∩ Fin ) ) × ( mEx ‘ 𝑇 ) ) |
| 5 |
|
xpss |
⊢ ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑇 ) ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑇 ) ∩ Fin ) ) ⊆ ( V × V ) |
| 6 |
|
ssv |
⊢ ( mEx ‘ 𝑇 ) ⊆ V |
| 7 |
|
xpss12 |
⊢ ( ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑇 ) ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑇 ) ∩ Fin ) ) ⊆ ( V × V ) ∧ ( mEx ‘ 𝑇 ) ⊆ V ) → ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑇 ) ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑇 ) ∩ Fin ) ) × ( mEx ‘ 𝑇 ) ) ⊆ ( ( V × V ) × V ) ) |
| 8 |
5 6 7
|
mp2an |
⊢ ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑇 ) ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑇 ) ∩ Fin ) ) × ( mEx ‘ 𝑇 ) ) ⊆ ( ( V × V ) × V ) |
| 9 |
4 8
|
eqsstri |
⊢ 𝑃 ⊆ ( ( V × V ) × V ) |