Step |
Hyp |
Ref |
Expression |
1 |
|
mpstssv.p |
|- P = ( mPreSt ` T ) |
2 |
|
eqid |
|- ( mDV ` T ) = ( mDV ` T ) |
3 |
|
eqid |
|- ( mEx ` T ) = ( mEx ` T ) |
4 |
2 3 1
|
mpstval |
|- P = ( ( { d e. ~P ( mDV ` T ) | `' d = d } X. ( ~P ( mEx ` T ) i^i Fin ) ) X. ( mEx ` T ) ) |
5 |
|
xpss |
|- ( { d e. ~P ( mDV ` T ) | `' d = d } X. ( ~P ( mEx ` T ) i^i Fin ) ) C_ ( _V X. _V ) |
6 |
|
ssv |
|- ( mEx ` T ) C_ _V |
7 |
|
xpss12 |
|- ( ( ( { d e. ~P ( mDV ` T ) | `' d = d } X. ( ~P ( mEx ` T ) i^i Fin ) ) C_ ( _V X. _V ) /\ ( mEx ` T ) C_ _V ) -> ( ( { d e. ~P ( mDV ` T ) | `' d = d } X. ( ~P ( mEx ` T ) i^i Fin ) ) X. ( mEx ` T ) ) C_ ( ( _V X. _V ) X. _V ) ) |
8 |
5 6 7
|
mp2an |
|- ( ( { d e. ~P ( mDV ` T ) | `' d = d } X. ( ~P ( mEx ` T ) i^i Fin ) ) X. ( mEx ` T ) ) C_ ( ( _V X. _V ) X. _V ) |
9 |
4 8
|
eqsstri |
|- P C_ ( ( _V X. _V ) X. _V ) |