| Step |
Hyp |
Ref |
Expression |
| 1 |
|
msrfval.v |
⊢ 𝑉 = ( mVars ‘ 𝑇 ) |
| 2 |
|
msrfval.p |
⊢ 𝑃 = ( mPreSt ‘ 𝑇 ) |
| 3 |
|
msrfval.r |
⊢ 𝑅 = ( mStRed ‘ 𝑇 ) |
| 4 |
|
msrval.z |
⊢ 𝑍 = ∪ ( 𝑉 “ ( 𝐻 ∪ { 𝐴 } ) ) |
| 5 |
1 2 3
|
msrfval |
⊢ 𝑅 = ( 𝑠 ∈ 𝑃 ↦ ⦋ ( 2nd ‘ ( 1st ‘ 𝑠 ) ) / ℎ ⦌ ⦋ ( 2nd ‘ 𝑠 ) / 𝑎 ⦌ 〈 ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∩ ⦋ ∪ ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) / 𝑧 ⦌ ( 𝑧 × 𝑧 ) ) , ℎ , 𝑎 〉 ) |
| 6 |
5
|
a1i |
⊢ ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 → 𝑅 = ( 𝑠 ∈ 𝑃 ↦ ⦋ ( 2nd ‘ ( 1st ‘ 𝑠 ) ) / ℎ ⦌ ⦋ ( 2nd ‘ 𝑠 ) / 𝑎 ⦌ 〈 ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∩ ⦋ ∪ ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) / 𝑧 ⦌ ( 𝑧 × 𝑧 ) ) , ℎ , 𝑎 〉 ) ) |
| 7 |
|
fvexd |
⊢ ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) → ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ∈ V ) |
| 8 |
|
fvexd |
⊢ ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) → ( 2nd ‘ 𝑠 ) ∈ V ) |
| 9 |
|
simpllr |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) |
| 10 |
9
|
fveq2d |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → ( 1st ‘ 𝑠 ) = ( 1st ‘ 〈 𝐷 , 𝐻 , 𝐴 〉 ) ) |
| 11 |
10
|
fveq2d |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → ( 1st ‘ ( 1st ‘ 𝑠 ) ) = ( 1st ‘ ( 1st ‘ 〈 𝐷 , 𝐻 , 𝐴 〉 ) ) ) |
| 12 |
|
eqid |
⊢ ( mDV ‘ 𝑇 ) = ( mDV ‘ 𝑇 ) |
| 13 |
|
eqid |
⊢ ( mEx ‘ 𝑇 ) = ( mEx ‘ 𝑇 ) |
| 14 |
12 13 2
|
elmpst |
⊢ ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ↔ ( ( 𝐷 ⊆ ( mDV ‘ 𝑇 ) ∧ ◡ 𝐷 = 𝐷 ) ∧ ( 𝐻 ⊆ ( mEx ‘ 𝑇 ) ∧ 𝐻 ∈ Fin ) ∧ 𝐴 ∈ ( mEx ‘ 𝑇 ) ) ) |
| 15 |
14
|
simp1bi |
⊢ ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 → ( 𝐷 ⊆ ( mDV ‘ 𝑇 ) ∧ ◡ 𝐷 = 𝐷 ) ) |
| 16 |
15
|
simpld |
⊢ ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 → 𝐷 ⊆ ( mDV ‘ 𝑇 ) ) |
| 17 |
16
|
ad3antrrr |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → 𝐷 ⊆ ( mDV ‘ 𝑇 ) ) |
| 18 |
|
fvex |
⊢ ( mDV ‘ 𝑇 ) ∈ V |
| 19 |
18
|
ssex |
⊢ ( 𝐷 ⊆ ( mDV ‘ 𝑇 ) → 𝐷 ∈ V ) |
| 20 |
17 19
|
syl |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → 𝐷 ∈ V ) |
| 21 |
14
|
simp2bi |
⊢ ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 → ( 𝐻 ⊆ ( mEx ‘ 𝑇 ) ∧ 𝐻 ∈ Fin ) ) |
| 22 |
21
|
simprd |
⊢ ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 → 𝐻 ∈ Fin ) |
| 23 |
22
|
ad3antrrr |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → 𝐻 ∈ Fin ) |
| 24 |
14
|
simp3bi |
⊢ ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 → 𝐴 ∈ ( mEx ‘ 𝑇 ) ) |
| 25 |
24
|
ad3antrrr |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → 𝐴 ∈ ( mEx ‘ 𝑇 ) ) |
| 26 |
|
ot1stg |
⊢ ( ( 𝐷 ∈ V ∧ 𝐻 ∈ Fin ∧ 𝐴 ∈ ( mEx ‘ 𝑇 ) ) → ( 1st ‘ ( 1st ‘ 〈 𝐷 , 𝐻 , 𝐴 〉 ) ) = 𝐷 ) |
| 27 |
20 23 25 26
|
syl3anc |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → ( 1st ‘ ( 1st ‘ 〈 𝐷 , 𝐻 , 𝐴 〉 ) ) = 𝐷 ) |
| 28 |
11 27
|
eqtrd |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → ( 1st ‘ ( 1st ‘ 𝑠 ) ) = 𝐷 ) |
| 29 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 30 |
|
imaexg |
⊢ ( 𝑉 ∈ V → ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) ∈ V ) |
| 31 |
29 30
|
ax-mp |
⊢ ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) ∈ V |
| 32 |
31
|
uniex |
⊢ ∪ ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) ∈ V |
| 33 |
32
|
a1i |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → ∪ ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) ∈ V ) |
| 34 |
|
id |
⊢ ( 𝑧 = ∪ ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) → 𝑧 = ∪ ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) ) |
| 35 |
|
simplr |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) |
| 36 |
10
|
fveq2d |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → ( 2nd ‘ ( 1st ‘ 𝑠 ) ) = ( 2nd ‘ ( 1st ‘ 〈 𝐷 , 𝐻 , 𝐴 〉 ) ) ) |
| 37 |
|
ot2ndg |
⊢ ( ( 𝐷 ∈ V ∧ 𝐻 ∈ Fin ∧ 𝐴 ∈ ( mEx ‘ 𝑇 ) ) → ( 2nd ‘ ( 1st ‘ 〈 𝐷 , 𝐻 , 𝐴 〉 ) ) = 𝐻 ) |
| 38 |
20 23 25 37
|
syl3anc |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → ( 2nd ‘ ( 1st ‘ 〈 𝐷 , 𝐻 , 𝐴 〉 ) ) = 𝐻 ) |
| 39 |
35 36 38
|
3eqtrd |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → ℎ = 𝐻 ) |
| 40 |
|
simpr |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → 𝑎 = ( 2nd ‘ 𝑠 ) ) |
| 41 |
9
|
fveq2d |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → ( 2nd ‘ 𝑠 ) = ( 2nd ‘ 〈 𝐷 , 𝐻 , 𝐴 〉 ) ) |
| 42 |
|
ot3rdg |
⊢ ( 𝐴 ∈ ( mEx ‘ 𝑇 ) → ( 2nd ‘ 〈 𝐷 , 𝐻 , 𝐴 〉 ) = 𝐴 ) |
| 43 |
25 42
|
syl |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → ( 2nd ‘ 〈 𝐷 , 𝐻 , 𝐴 〉 ) = 𝐴 ) |
| 44 |
40 41 43
|
3eqtrd |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → 𝑎 = 𝐴 ) |
| 45 |
44
|
sneqd |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → { 𝑎 } = { 𝐴 } ) |
| 46 |
39 45
|
uneq12d |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → ( ℎ ∪ { 𝑎 } ) = ( 𝐻 ∪ { 𝐴 } ) ) |
| 47 |
46
|
imaeq2d |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) = ( 𝑉 “ ( 𝐻 ∪ { 𝐴 } ) ) ) |
| 48 |
47
|
unieqd |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → ∪ ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) = ∪ ( 𝑉 “ ( 𝐻 ∪ { 𝐴 } ) ) ) |
| 49 |
48 4
|
eqtr4di |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → ∪ ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) = 𝑍 ) |
| 50 |
34 49
|
sylan9eqr |
⊢ ( ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) ∧ 𝑧 = ∪ ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) ) → 𝑧 = 𝑍 ) |
| 51 |
50
|
sqxpeqd |
⊢ ( ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) ∧ 𝑧 = ∪ ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) ) → ( 𝑧 × 𝑧 ) = ( 𝑍 × 𝑍 ) ) |
| 52 |
33 51
|
csbied |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → ⦋ ∪ ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) / 𝑧 ⦌ ( 𝑧 × 𝑧 ) = ( 𝑍 × 𝑍 ) ) |
| 53 |
28 52
|
ineq12d |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∩ ⦋ ∪ ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) / 𝑧 ⦌ ( 𝑧 × 𝑧 ) ) = ( 𝐷 ∩ ( 𝑍 × 𝑍 ) ) ) |
| 54 |
53 39 44
|
oteq123d |
⊢ ( ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) ∧ 𝑎 = ( 2nd ‘ 𝑠 ) ) → 〈 ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∩ ⦋ ∪ ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) / 𝑧 ⦌ ( 𝑧 × 𝑧 ) ) , ℎ , 𝑎 〉 = 〈 ( 𝐷 ∩ ( 𝑍 × 𝑍 ) ) , 𝐻 , 𝐴 〉 ) |
| 55 |
8 54
|
csbied |
⊢ ( ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) ∧ ℎ = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) → ⦋ ( 2nd ‘ 𝑠 ) / 𝑎 ⦌ 〈 ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∩ ⦋ ∪ ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) / 𝑧 ⦌ ( 𝑧 × 𝑧 ) ) , ℎ , 𝑎 〉 = 〈 ( 𝐷 ∩ ( 𝑍 × 𝑍 ) ) , 𝐻 , 𝐴 〉 ) |
| 56 |
7 55
|
csbied |
⊢ ( ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ∧ 𝑠 = 〈 𝐷 , 𝐻 , 𝐴 〉 ) → ⦋ ( 2nd ‘ ( 1st ‘ 𝑠 ) ) / ℎ ⦌ ⦋ ( 2nd ‘ 𝑠 ) / 𝑎 ⦌ 〈 ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∩ ⦋ ∪ ( 𝑉 “ ( ℎ ∪ { 𝑎 } ) ) / 𝑧 ⦌ ( 𝑧 × 𝑧 ) ) , ℎ , 𝑎 〉 = 〈 ( 𝐷 ∩ ( 𝑍 × 𝑍 ) ) , 𝐻 , 𝐴 〉 ) |
| 57 |
|
id |
⊢ ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 → 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 ) |
| 58 |
|
otex |
⊢ 〈 ( 𝐷 ∩ ( 𝑍 × 𝑍 ) ) , 𝐻 , 𝐴 〉 ∈ V |
| 59 |
58
|
a1i |
⊢ ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 → 〈 ( 𝐷 ∩ ( 𝑍 × 𝑍 ) ) , 𝐻 , 𝐴 〉 ∈ V ) |
| 60 |
6 56 57 59
|
fvmptd |
⊢ ( 〈 𝐷 , 𝐻 , 𝐴 〉 ∈ 𝑃 → ( 𝑅 ‘ 〈 𝐷 , 𝐻 , 𝐴 〉 ) = 〈 ( 𝐷 ∩ ( 𝑍 × 𝑍 ) ) , 𝐻 , 𝐴 〉 ) |