| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismfs.c |
|- C = ( mCN ` T ) |
| 2 |
|
ismfs.v |
|- V = ( mVR ` T ) |
| 3 |
|
ismfs.y |
|- Y = ( mType ` T ) |
| 4 |
|
ismfs.f |
|- F = ( mVT ` T ) |
| 5 |
|
ismfs.k |
|- K = ( mTC ` T ) |
| 6 |
|
ismfs.a |
|- A = ( mAx ` T ) |
| 7 |
|
ismfs.s |
|- S = ( mStat ` T ) |
| 8 |
|
fveq2 |
|- ( t = T -> ( mCN ` t ) = ( mCN ` T ) ) |
| 9 |
8 1
|
eqtr4di |
|- ( t = T -> ( mCN ` t ) = C ) |
| 10 |
|
fveq2 |
|- ( t = T -> ( mVR ` t ) = ( mVR ` T ) ) |
| 11 |
10 2
|
eqtr4di |
|- ( t = T -> ( mVR ` t ) = V ) |
| 12 |
9 11
|
ineq12d |
|- ( t = T -> ( ( mCN ` t ) i^i ( mVR ` t ) ) = ( C i^i V ) ) |
| 13 |
12
|
eqeq1d |
|- ( t = T -> ( ( ( mCN ` t ) i^i ( mVR ` t ) ) = (/) <-> ( C i^i V ) = (/) ) ) |
| 14 |
|
fveq2 |
|- ( t = T -> ( mType ` t ) = ( mType ` T ) ) |
| 15 |
14 3
|
eqtr4di |
|- ( t = T -> ( mType ` t ) = Y ) |
| 16 |
|
fveq2 |
|- ( t = T -> ( mTC ` t ) = ( mTC ` T ) ) |
| 17 |
16 5
|
eqtr4di |
|- ( t = T -> ( mTC ` t ) = K ) |
| 18 |
15 11 17
|
feq123d |
|- ( t = T -> ( ( mType ` t ) : ( mVR ` t ) --> ( mTC ` t ) <-> Y : V --> K ) ) |
| 19 |
13 18
|
anbi12d |
|- ( t = T -> ( ( ( ( mCN ` t ) i^i ( mVR ` t ) ) = (/) /\ ( mType ` t ) : ( mVR ` t ) --> ( mTC ` t ) ) <-> ( ( C i^i V ) = (/) /\ Y : V --> K ) ) ) |
| 20 |
|
fveq2 |
|- ( t = T -> ( mAx ` t ) = ( mAx ` T ) ) |
| 21 |
20 6
|
eqtr4di |
|- ( t = T -> ( mAx ` t ) = A ) |
| 22 |
|
fveq2 |
|- ( t = T -> ( mStat ` t ) = ( mStat ` T ) ) |
| 23 |
22 7
|
eqtr4di |
|- ( t = T -> ( mStat ` t ) = S ) |
| 24 |
21 23
|
sseq12d |
|- ( t = T -> ( ( mAx ` t ) C_ ( mStat ` t ) <-> A C_ S ) ) |
| 25 |
|
fveq2 |
|- ( t = T -> ( mVT ` t ) = ( mVT ` T ) ) |
| 26 |
25 4
|
eqtr4di |
|- ( t = T -> ( mVT ` t ) = F ) |
| 27 |
15
|
cnveqd |
|- ( t = T -> `' ( mType ` t ) = `' Y ) |
| 28 |
27
|
imaeq1d |
|- ( t = T -> ( `' ( mType ` t ) " { v } ) = ( `' Y " { v } ) ) |
| 29 |
28
|
eleq1d |
|- ( t = T -> ( ( `' ( mType ` t ) " { v } ) e. Fin <-> ( `' Y " { v } ) e. Fin ) ) |
| 30 |
29
|
notbid |
|- ( t = T -> ( -. ( `' ( mType ` t ) " { v } ) e. Fin <-> -. ( `' Y " { v } ) e. Fin ) ) |
| 31 |
26 30
|
raleqbidv |
|- ( t = T -> ( A. v e. ( mVT ` t ) -. ( `' ( mType ` t ) " { v } ) e. Fin <-> A. v e. F -. ( `' Y " { v } ) e. Fin ) ) |
| 32 |
24 31
|
anbi12d |
|- ( t = T -> ( ( ( mAx ` t ) C_ ( mStat ` t ) /\ A. v e. ( mVT ` t ) -. ( `' ( mType ` t ) " { v } ) e. Fin ) <-> ( A C_ S /\ A. v e. F -. ( `' Y " { v } ) e. Fin ) ) ) |
| 33 |
19 32
|
anbi12d |
|- ( t = T -> ( ( ( ( ( mCN ` t ) i^i ( mVR ` t ) ) = (/) /\ ( mType ` t ) : ( mVR ` t ) --> ( mTC ` t ) ) /\ ( ( mAx ` t ) C_ ( mStat ` t ) /\ A. v e. ( mVT ` t ) -. ( `' ( mType ` t ) " { v } ) e. Fin ) ) <-> ( ( ( C i^i V ) = (/) /\ Y : V --> K ) /\ ( A C_ S /\ A. v e. F -. ( `' Y " { v } ) e. Fin ) ) ) ) |
| 34 |
|
df-mfs |
|- mFS = { t | ( ( ( ( mCN ` t ) i^i ( mVR ` t ) ) = (/) /\ ( mType ` t ) : ( mVR ` t ) --> ( mTC ` t ) ) /\ ( ( mAx ` t ) C_ ( mStat ` t ) /\ A. v e. ( mVT ` t ) -. ( `' ( mType ` t ) " { v } ) e. Fin ) ) } |
| 35 |
33 34
|
elab2g |
|- ( T e. W -> ( T e. mFS <-> ( ( ( C i^i V ) = (/) /\ Y : V --> K ) /\ ( A C_ S /\ A. v e. F -. ( `' Y " { v } ) e. Fin ) ) ) ) |