| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mfsdisj.c |
|- C = ( mCN ` T ) |
| 2 |
|
mfsdisj.v |
|- V = ( mVR ` T ) |
| 3 |
|
eqid |
|- ( mType ` T ) = ( mType ` T ) |
| 4 |
|
eqid |
|- ( mVT ` T ) = ( mVT ` T ) |
| 5 |
|
eqid |
|- ( mTC ` T ) = ( mTC ` T ) |
| 6 |
|
eqid |
|- ( mAx ` T ) = ( mAx ` T ) |
| 7 |
|
eqid |
|- ( mStat ` T ) = ( mStat ` T ) |
| 8 |
1 2 3 4 5 6 7
|
ismfs |
|- ( T e. mFS -> ( T e. mFS <-> ( ( ( C i^i V ) = (/) /\ ( mType ` T ) : V --> ( mTC ` T ) ) /\ ( ( mAx ` T ) C_ ( mStat ` T ) /\ A. v e. ( mVT ` T ) -. ( `' ( mType ` T ) " { v } ) e. Fin ) ) ) ) |
| 9 |
8
|
ibi |
|- ( T e. mFS -> ( ( ( C i^i V ) = (/) /\ ( mType ` T ) : V --> ( mTC ` T ) ) /\ ( ( mAx ` T ) C_ ( mStat ` T ) /\ A. v e. ( mVT ` T ) -. ( `' ( mType ` T ) " { v } ) e. Fin ) ) ) |
| 10 |
9
|
simplld |
|- ( T e. mFS -> ( C i^i V ) = (/) ) |