Metamath Proof Explorer


Theorem mfsdisj

Description: The constants and variables of a formal system are disjoint. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mfsdisj.c 𝐶 = ( mCN ‘ 𝑇 )
mfsdisj.v 𝑉 = ( mVR ‘ 𝑇 )
Assertion mfsdisj ( 𝑇 ∈ mFS → ( 𝐶𝑉 ) = ∅ )

Proof

Step Hyp Ref Expression
1 mfsdisj.c 𝐶 = ( mCN ‘ 𝑇 )
2 mfsdisj.v 𝑉 = ( mVR ‘ 𝑇 )
3 eqid ( mType ‘ 𝑇 ) = ( mType ‘ 𝑇 )
4 eqid ( mVT ‘ 𝑇 ) = ( mVT ‘ 𝑇 )
5 eqid ( mTC ‘ 𝑇 ) = ( mTC ‘ 𝑇 )
6 eqid ( mAx ‘ 𝑇 ) = ( mAx ‘ 𝑇 )
7 eqid ( mStat ‘ 𝑇 ) = ( mStat ‘ 𝑇 )
8 1 2 3 4 5 6 7 ismfs ( 𝑇 ∈ mFS → ( 𝑇 ∈ mFS ↔ ( ( ( 𝐶𝑉 ) = ∅ ∧ ( mType ‘ 𝑇 ) : 𝑉 ⟶ ( mTC ‘ 𝑇 ) ) ∧ ( ( mAx ‘ 𝑇 ) ⊆ ( mStat ‘ 𝑇 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑇 ) ¬ ( ( mType ‘ 𝑇 ) “ { 𝑣 } ) ∈ Fin ) ) ) )
9 8 ibi ( 𝑇 ∈ mFS → ( ( ( 𝐶𝑉 ) = ∅ ∧ ( mType ‘ 𝑇 ) : 𝑉 ⟶ ( mTC ‘ 𝑇 ) ) ∧ ( ( mAx ‘ 𝑇 ) ⊆ ( mStat ‘ 𝑇 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑇 ) ¬ ( ( mType ‘ 𝑇 ) “ { 𝑣 } ) ∈ Fin ) ) )
10 9 simplld ( 𝑇 ∈ mFS → ( 𝐶𝑉 ) = ∅ )