Step |
Hyp |
Ref |
Expression |
1 |
|
mfsdisj.c |
⊢ 𝐶 = ( mCN ‘ 𝑇 ) |
2 |
|
mfsdisj.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
3 |
|
eqid |
⊢ ( mType ‘ 𝑇 ) = ( mType ‘ 𝑇 ) |
4 |
|
eqid |
⊢ ( mVT ‘ 𝑇 ) = ( mVT ‘ 𝑇 ) |
5 |
|
eqid |
⊢ ( mTC ‘ 𝑇 ) = ( mTC ‘ 𝑇 ) |
6 |
|
eqid |
⊢ ( mAx ‘ 𝑇 ) = ( mAx ‘ 𝑇 ) |
7 |
|
eqid |
⊢ ( mStat ‘ 𝑇 ) = ( mStat ‘ 𝑇 ) |
8 |
1 2 3 4 5 6 7
|
ismfs |
⊢ ( 𝑇 ∈ mFS → ( 𝑇 ∈ mFS ↔ ( ( ( 𝐶 ∩ 𝑉 ) = ∅ ∧ ( mType ‘ 𝑇 ) : 𝑉 ⟶ ( mTC ‘ 𝑇 ) ) ∧ ( ( mAx ‘ 𝑇 ) ⊆ ( mStat ‘ 𝑇 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑇 ) ¬ ( ◡ ( mType ‘ 𝑇 ) “ { 𝑣 } ) ∈ Fin ) ) ) ) |
9 |
8
|
ibi |
⊢ ( 𝑇 ∈ mFS → ( ( ( 𝐶 ∩ 𝑉 ) = ∅ ∧ ( mType ‘ 𝑇 ) : 𝑉 ⟶ ( mTC ‘ 𝑇 ) ) ∧ ( ( mAx ‘ 𝑇 ) ⊆ ( mStat ‘ 𝑇 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑇 ) ¬ ( ◡ ( mType ‘ 𝑇 ) “ { 𝑣 } ) ∈ Fin ) ) ) |
10 |
9
|
simplld |
⊢ ( 𝑇 ∈ mFS → ( 𝐶 ∩ 𝑉 ) = ∅ ) |