Step |
Hyp |
Ref |
Expression |
1 |
|
ismfs.c |
⊢ 𝐶 = ( mCN ‘ 𝑇 ) |
2 |
|
ismfs.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
3 |
|
ismfs.y |
⊢ 𝑌 = ( mType ‘ 𝑇 ) |
4 |
|
ismfs.f |
⊢ 𝐹 = ( mVT ‘ 𝑇 ) |
5 |
|
ismfs.k |
⊢ 𝐾 = ( mTC ‘ 𝑇 ) |
6 |
|
ismfs.a |
⊢ 𝐴 = ( mAx ‘ 𝑇 ) |
7 |
|
ismfs.s |
⊢ 𝑆 = ( mStat ‘ 𝑇 ) |
8 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mCN ‘ 𝑡 ) = ( mCN ‘ 𝑇 ) ) |
9 |
8 1
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mCN ‘ 𝑡 ) = 𝐶 ) |
10 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mVR ‘ 𝑡 ) = ( mVR ‘ 𝑇 ) ) |
11 |
10 2
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mVR ‘ 𝑡 ) = 𝑉 ) |
12 |
9 11
|
ineq12d |
⊢ ( 𝑡 = 𝑇 → ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ( 𝐶 ∩ 𝑉 ) ) |
13 |
12
|
eqeq1d |
⊢ ( 𝑡 = 𝑇 → ( ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ ↔ ( 𝐶 ∩ 𝑉 ) = ∅ ) ) |
14 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mType ‘ 𝑡 ) = ( mType ‘ 𝑇 ) ) |
15 |
14 3
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mType ‘ 𝑡 ) = 𝑌 ) |
16 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mTC ‘ 𝑡 ) = ( mTC ‘ 𝑇 ) ) |
17 |
16 5
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mTC ‘ 𝑡 ) = 𝐾 ) |
18 |
15 11 17
|
feq123d |
⊢ ( 𝑡 = 𝑇 → ( ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) ↔ 𝑌 : 𝑉 ⟶ 𝐾 ) ) |
19 |
13 18
|
anbi12d |
⊢ ( 𝑡 = 𝑇 → ( ( ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ ∧ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) ) ↔ ( ( 𝐶 ∩ 𝑉 ) = ∅ ∧ 𝑌 : 𝑉 ⟶ 𝐾 ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mAx ‘ 𝑡 ) = ( mAx ‘ 𝑇 ) ) |
21 |
20 6
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mAx ‘ 𝑡 ) = 𝐴 ) |
22 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mStat ‘ 𝑡 ) = ( mStat ‘ 𝑇 ) ) |
23 |
22 7
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mStat ‘ 𝑡 ) = 𝑆 ) |
24 |
21 23
|
sseq12d |
⊢ ( 𝑡 = 𝑇 → ( ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) ↔ 𝐴 ⊆ 𝑆 ) ) |
25 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mVT ‘ 𝑡 ) = ( mVT ‘ 𝑇 ) ) |
26 |
25 4
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mVT ‘ 𝑡 ) = 𝐹 ) |
27 |
15
|
cnveqd |
⊢ ( 𝑡 = 𝑇 → ◡ ( mType ‘ 𝑡 ) = ◡ 𝑌 ) |
28 |
27
|
imaeq1d |
⊢ ( 𝑡 = 𝑇 → ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) = ( ◡ 𝑌 “ { 𝑣 } ) ) |
29 |
28
|
eleq1d |
⊢ ( 𝑡 = 𝑇 → ( ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ↔ ( ◡ 𝑌 “ { 𝑣 } ) ∈ Fin ) ) |
30 |
29
|
notbid |
⊢ ( 𝑡 = 𝑇 → ( ¬ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ↔ ¬ ( ◡ 𝑌 “ { 𝑣 } ) ∈ Fin ) ) |
31 |
26 30
|
raleqbidv |
⊢ ( 𝑡 = 𝑇 → ( ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ↔ ∀ 𝑣 ∈ 𝐹 ¬ ( ◡ 𝑌 “ { 𝑣 } ) ∈ Fin ) ) |
32 |
24 31
|
anbi12d |
⊢ ( 𝑡 = 𝑇 → ( ( ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ) ↔ ( 𝐴 ⊆ 𝑆 ∧ ∀ 𝑣 ∈ 𝐹 ¬ ( ◡ 𝑌 “ { 𝑣 } ) ∈ Fin ) ) ) |
33 |
19 32
|
anbi12d |
⊢ ( 𝑡 = 𝑇 → ( ( ( ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ ∧ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) ) ∧ ( ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ) ) ↔ ( ( ( 𝐶 ∩ 𝑉 ) = ∅ ∧ 𝑌 : 𝑉 ⟶ 𝐾 ) ∧ ( 𝐴 ⊆ 𝑆 ∧ ∀ 𝑣 ∈ 𝐹 ¬ ( ◡ 𝑌 “ { 𝑣 } ) ∈ Fin ) ) ) ) |
34 |
|
df-mfs |
⊢ mFS = { 𝑡 ∣ ( ( ( ( mCN ‘ 𝑡 ) ∩ ( mVR ‘ 𝑡 ) ) = ∅ ∧ ( mType ‘ 𝑡 ) : ( mVR ‘ 𝑡 ) ⟶ ( mTC ‘ 𝑡 ) ) ∧ ( ( mAx ‘ 𝑡 ) ⊆ ( mStat ‘ 𝑡 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑡 ) ¬ ( ◡ ( mType ‘ 𝑡 ) “ { 𝑣 } ) ∈ Fin ) ) } |
35 |
33 34
|
elab2g |
⊢ ( 𝑇 ∈ 𝑊 → ( 𝑇 ∈ mFS ↔ ( ( ( 𝐶 ∩ 𝑉 ) = ∅ ∧ 𝑌 : 𝑉 ⟶ 𝐾 ) ∧ ( 𝐴 ⊆ 𝑆 ∧ ∀ 𝑣 ∈ 𝐹 ¬ ( ◡ 𝑌 “ { 𝑣 } ) ∈ Fin ) ) ) ) |