Step |
Hyp |
Ref |
Expression |
1 |
|
mtyf2.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
2 |
|
mvtf2.k |
⊢ 𝐾 = ( mTC ‘ 𝑇 ) |
3 |
|
mtyf2.y |
⊢ 𝑌 = ( mType ‘ 𝑇 ) |
4 |
|
eqid |
⊢ ( mCN ‘ 𝑇 ) = ( mCN ‘ 𝑇 ) |
5 |
|
eqid |
⊢ ( mVT ‘ 𝑇 ) = ( mVT ‘ 𝑇 ) |
6 |
|
eqid |
⊢ ( mAx ‘ 𝑇 ) = ( mAx ‘ 𝑇 ) |
7 |
|
eqid |
⊢ ( mStat ‘ 𝑇 ) = ( mStat ‘ 𝑇 ) |
8 |
4 1 3 5 2 6 7
|
ismfs |
⊢ ( 𝑇 ∈ mFS → ( 𝑇 ∈ mFS ↔ ( ( ( ( mCN ‘ 𝑇 ) ∩ 𝑉 ) = ∅ ∧ 𝑌 : 𝑉 ⟶ 𝐾 ) ∧ ( ( mAx ‘ 𝑇 ) ⊆ ( mStat ‘ 𝑇 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑇 ) ¬ ( ◡ 𝑌 “ { 𝑣 } ) ∈ Fin ) ) ) ) |
9 |
8
|
ibi |
⊢ ( 𝑇 ∈ mFS → ( ( ( ( mCN ‘ 𝑇 ) ∩ 𝑉 ) = ∅ ∧ 𝑌 : 𝑉 ⟶ 𝐾 ) ∧ ( ( mAx ‘ 𝑇 ) ⊆ ( mStat ‘ 𝑇 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑇 ) ¬ ( ◡ 𝑌 “ { 𝑣 } ) ∈ Fin ) ) ) |
10 |
9
|
simplrd |
⊢ ( 𝑇 ∈ mFS → 𝑌 : 𝑉 ⟶ 𝐾 ) |