Metamath Proof Explorer


Theorem mtyf2

Description: The type function maps variables to typecodes. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mtyf2.v 𝑉 = ( mVR ‘ 𝑇 )
mvtf2.k 𝐾 = ( mTC ‘ 𝑇 )
mtyf2.y 𝑌 = ( mType ‘ 𝑇 )
Assertion mtyf2 ( 𝑇 ∈ mFS → 𝑌 : 𝑉𝐾 )

Proof

Step Hyp Ref Expression
1 mtyf2.v 𝑉 = ( mVR ‘ 𝑇 )
2 mvtf2.k 𝐾 = ( mTC ‘ 𝑇 )
3 mtyf2.y 𝑌 = ( mType ‘ 𝑇 )
4 eqid ( mCN ‘ 𝑇 ) = ( mCN ‘ 𝑇 )
5 eqid ( mVT ‘ 𝑇 ) = ( mVT ‘ 𝑇 )
6 eqid ( mAx ‘ 𝑇 ) = ( mAx ‘ 𝑇 )
7 eqid ( mStat ‘ 𝑇 ) = ( mStat ‘ 𝑇 )
8 4 1 3 5 2 6 7 ismfs ( 𝑇 ∈ mFS → ( 𝑇 ∈ mFS ↔ ( ( ( ( mCN ‘ 𝑇 ) ∩ 𝑉 ) = ∅ ∧ 𝑌 : 𝑉𝐾 ) ∧ ( ( mAx ‘ 𝑇 ) ⊆ ( mStat ‘ 𝑇 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑇 ) ¬ ( 𝑌 “ { 𝑣 } ) ∈ Fin ) ) ) )
9 8 ibi ( 𝑇 ∈ mFS → ( ( ( ( mCN ‘ 𝑇 ) ∩ 𝑉 ) = ∅ ∧ 𝑌 : 𝑉𝐾 ) ∧ ( ( mAx ‘ 𝑇 ) ⊆ ( mStat ‘ 𝑇 ) ∧ ∀ 𝑣 ∈ ( mVT ‘ 𝑇 ) ¬ ( 𝑌 “ { 𝑣 } ) ∈ Fin ) ) )
10 9 simplrd ( 𝑇 ∈ mFS → 𝑌 : 𝑉𝐾 )