| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mtyf.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
| 2 |
|
mtyf.f |
⊢ 𝐹 = ( mVT ‘ 𝑇 ) |
| 3 |
|
mtyf.y |
⊢ 𝑌 = ( mType ‘ 𝑇 ) |
| 4 |
|
eqid |
⊢ ( mTC ‘ 𝑇 ) = ( mTC ‘ 𝑇 ) |
| 5 |
1 4 3
|
mtyf2 |
⊢ ( 𝑇 ∈ mFS → 𝑌 : 𝑉 ⟶ ( mTC ‘ 𝑇 ) ) |
| 6 |
|
ffn |
⊢ ( 𝑌 : 𝑉 ⟶ ( mTC ‘ 𝑇 ) → 𝑌 Fn 𝑉 ) |
| 7 |
|
dffn4 |
⊢ ( 𝑌 Fn 𝑉 ↔ 𝑌 : 𝑉 –onto→ ran 𝑌 ) |
| 8 |
6 7
|
sylib |
⊢ ( 𝑌 : 𝑉 ⟶ ( mTC ‘ 𝑇 ) → 𝑌 : 𝑉 –onto→ ran 𝑌 ) |
| 9 |
|
fof |
⊢ ( 𝑌 : 𝑉 –onto→ ran 𝑌 → 𝑌 : 𝑉 ⟶ ran 𝑌 ) |
| 10 |
5 8 9
|
3syl |
⊢ ( 𝑇 ∈ mFS → 𝑌 : 𝑉 ⟶ ran 𝑌 ) |
| 11 |
2 3
|
mvtval |
⊢ 𝐹 = ran 𝑌 |
| 12 |
|
feq3 |
⊢ ( 𝐹 = ran 𝑌 → ( 𝑌 : 𝑉 ⟶ 𝐹 ↔ 𝑌 : 𝑉 ⟶ ran 𝑌 ) ) |
| 13 |
11 12
|
ax-mp |
⊢ ( 𝑌 : 𝑉 ⟶ 𝐹 ↔ 𝑌 : 𝑉 ⟶ ran 𝑌 ) |
| 14 |
10 13
|
sylibr |
⊢ ( 𝑇 ∈ mFS → 𝑌 : 𝑉 ⟶ 𝐹 ) |