Metamath Proof Explorer


Theorem mtyf

Description: The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mtyf.v 𝑉 = ( mVR ‘ 𝑇 )
mtyf.f 𝐹 = ( mVT ‘ 𝑇 )
mtyf.y 𝑌 = ( mType ‘ 𝑇 )
Assertion mtyf ( 𝑇 ∈ mFS → 𝑌 : 𝑉𝐹 )

Proof

Step Hyp Ref Expression
1 mtyf.v 𝑉 = ( mVR ‘ 𝑇 )
2 mtyf.f 𝐹 = ( mVT ‘ 𝑇 )
3 mtyf.y 𝑌 = ( mType ‘ 𝑇 )
4 eqid ( mTC ‘ 𝑇 ) = ( mTC ‘ 𝑇 )
5 1 4 3 mtyf2 ( 𝑇 ∈ mFS → 𝑌 : 𝑉 ⟶ ( mTC ‘ 𝑇 ) )
6 ffn ( 𝑌 : 𝑉 ⟶ ( mTC ‘ 𝑇 ) → 𝑌 Fn 𝑉 )
7 dffn4 ( 𝑌 Fn 𝑉𝑌 : 𝑉onto→ ran 𝑌 )
8 6 7 sylib ( 𝑌 : 𝑉 ⟶ ( mTC ‘ 𝑇 ) → 𝑌 : 𝑉onto→ ran 𝑌 )
9 fof ( 𝑌 : 𝑉onto→ ran 𝑌𝑌 : 𝑉 ⟶ ran 𝑌 )
10 5 8 9 3syl ( 𝑇 ∈ mFS → 𝑌 : 𝑉 ⟶ ran 𝑌 )
11 2 3 mvtval 𝐹 = ran 𝑌
12 feq3 ( 𝐹 = ran 𝑌 → ( 𝑌 : 𝑉𝐹𝑌 : 𝑉 ⟶ ran 𝑌 ) )
13 11 12 ax-mp ( 𝑌 : 𝑉𝐹𝑌 : 𝑉 ⟶ ran 𝑌 )
14 10 13 sylibr ( 𝑇 ∈ mFS → 𝑌 : 𝑉𝐹 )