Description: The set of variable typecodes is a subset of all typecodes. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mvtss.f | ⊢ 𝐹 = ( mVT ‘ 𝑇 ) | |
mvtss.k | ⊢ 𝐾 = ( mTC ‘ 𝑇 ) | ||
Assertion | mvtss | ⊢ ( 𝑇 ∈ mFS → 𝐹 ⊆ 𝐾 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvtss.f | ⊢ 𝐹 = ( mVT ‘ 𝑇 ) | |
2 | mvtss.k | ⊢ 𝐾 = ( mTC ‘ 𝑇 ) | |
3 | eqid | ⊢ ( mType ‘ 𝑇 ) = ( mType ‘ 𝑇 ) | |
4 | 1 3 | mvtval | ⊢ 𝐹 = ran ( mType ‘ 𝑇 ) |
5 | eqid | ⊢ ( mVR ‘ 𝑇 ) = ( mVR ‘ 𝑇 ) | |
6 | 5 2 3 | mtyf2 | ⊢ ( 𝑇 ∈ mFS → ( mType ‘ 𝑇 ) : ( mVR ‘ 𝑇 ) ⟶ 𝐾 ) |
7 | 6 | frnd | ⊢ ( 𝑇 ∈ mFS → ran ( mType ‘ 𝑇 ) ⊆ 𝐾 ) |
8 | 4 7 | eqsstrid | ⊢ ( 𝑇 ∈ mFS → 𝐹 ⊆ 𝐾 ) |