Metamath Proof Explorer


Theorem mvtss

Description: The set of variable typecodes is a subset of all typecodes. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvtss.f 𝐹 = ( mVT ‘ 𝑇 )
mvtss.k 𝐾 = ( mTC ‘ 𝑇 )
Assertion mvtss ( 𝑇 ∈ mFS → 𝐹𝐾 )

Proof

Step Hyp Ref Expression
1 mvtss.f 𝐹 = ( mVT ‘ 𝑇 )
2 mvtss.k 𝐾 = ( mTC ‘ 𝑇 )
3 eqid ( mType ‘ 𝑇 ) = ( mType ‘ 𝑇 )
4 1 3 mvtval 𝐹 = ran ( mType ‘ 𝑇 )
5 eqid ( mVR ‘ 𝑇 ) = ( mVR ‘ 𝑇 )
6 5 2 3 mtyf2 ( 𝑇 ∈ mFS → ( mType ‘ 𝑇 ) : ( mVR ‘ 𝑇 ) ⟶ 𝐾 )
7 6 frnd ( 𝑇 ∈ mFS → ran ( mType ‘ 𝑇 ) ⊆ 𝐾 )
8 4 7 eqsstrid ( 𝑇 ∈ mFS → 𝐹𝐾 )