Description: The set of variable typecodes is a subset of all typecodes. (Contributed by Mario Carneiro, 18-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvtss.f | ⊢ 𝐹 = ( mVT ‘ 𝑇 ) | |
| mvtss.k | ⊢ 𝐾 = ( mTC ‘ 𝑇 ) | ||
| Assertion | mvtss | ⊢ ( 𝑇 ∈ mFS → 𝐹 ⊆ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvtss.f | ⊢ 𝐹 = ( mVT ‘ 𝑇 ) | |
| 2 | mvtss.k | ⊢ 𝐾 = ( mTC ‘ 𝑇 ) | |
| 3 | eqid | ⊢ ( mType ‘ 𝑇 ) = ( mType ‘ 𝑇 ) | |
| 4 | 1 3 | mvtval | ⊢ 𝐹 = ran ( mType ‘ 𝑇 ) |
| 5 | eqid | ⊢ ( mVR ‘ 𝑇 ) = ( mVR ‘ 𝑇 ) | |
| 6 | 5 2 3 | mtyf2 | ⊢ ( 𝑇 ∈ mFS → ( mType ‘ 𝑇 ) : ( mVR ‘ 𝑇 ) ⟶ 𝐾 ) |
| 7 | 6 | frnd | ⊢ ( 𝑇 ∈ mFS → ran ( mType ‘ 𝑇 ) ⊆ 𝐾 ) |
| 8 | 4 7 | eqsstrid | ⊢ ( 𝑇 ∈ mFS → 𝐹 ⊆ 𝐾 ) |