Metamath Proof Explorer


Theorem mvtss

Description: The set of variable typecodes is a subset of all typecodes. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvtss.f
|- F = ( mVT ` T )
mvtss.k
|- K = ( mTC ` T )
Assertion mvtss
|- ( T e. mFS -> F C_ K )

Proof

Step Hyp Ref Expression
1 mvtss.f
 |-  F = ( mVT ` T )
2 mvtss.k
 |-  K = ( mTC ` T )
3 eqid
 |-  ( mType ` T ) = ( mType ` T )
4 1 3 mvtval
 |-  F = ran ( mType ` T )
5 eqid
 |-  ( mVR ` T ) = ( mVR ` T )
6 5 2 3 mtyf2
 |-  ( T e. mFS -> ( mType ` T ) : ( mVR ` T ) --> K )
7 6 frnd
 |-  ( T e. mFS -> ran ( mType ` T ) C_ K )
8 4 7 eqsstrid
 |-  ( T e. mFS -> F C_ K )