Description: The set of variable typecodes is a subset of all typecodes. (Contributed by Mario Carneiro, 18-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvtss.f | |- F = ( mVT ` T ) |
|
| mvtss.k | |- K = ( mTC ` T ) |
||
| Assertion | mvtss | |- ( T e. mFS -> F C_ K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvtss.f | |- F = ( mVT ` T ) |
|
| 2 | mvtss.k | |- K = ( mTC ` T ) |
|
| 3 | eqid | |- ( mType ` T ) = ( mType ` T ) |
|
| 4 | 1 3 | mvtval | |- F = ran ( mType ` T ) |
| 5 | eqid | |- ( mVR ` T ) = ( mVR ` T ) |
|
| 6 | 5 2 3 | mtyf2 | |- ( T e. mFS -> ( mType ` T ) : ( mVR ` T ) --> K ) |
| 7 | 6 | frnd | |- ( T e. mFS -> ran ( mType ` T ) C_ K ) |
| 8 | 4 7 | eqsstrid | |- ( T e. mFS -> F C_ K ) |