Description: The set of variable typecodes is a subset of all typecodes. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mvtss.f | |- F = ( mVT ` T ) |
|
mvtss.k | |- K = ( mTC ` T ) |
||
Assertion | mvtss | |- ( T e. mFS -> F C_ K ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvtss.f | |- F = ( mVT ` T ) |
|
2 | mvtss.k | |- K = ( mTC ` T ) |
|
3 | eqid | |- ( mType ` T ) = ( mType ` T ) |
|
4 | 1 3 | mvtval | |- F = ran ( mType ` T ) |
5 | eqid | |- ( mVR ` T ) = ( mVR ` T ) |
|
6 | 5 2 3 | mtyf2 | |- ( T e. mFS -> ( mType ` T ) : ( mVR ` T ) --> K ) |
7 | 6 | frnd | |- ( T e. mFS -> ran ( mType ` T ) C_ K ) |
8 | 4 7 | eqsstrid | |- ( T e. mFS -> F C_ K ) |