Step |
Hyp |
Ref |
Expression |
1 |
|
maxsta.a |
|- A = ( mAx ` T ) |
2 |
|
maxsta.s |
|- S = ( mStat ` T ) |
3 |
|
eqid |
|- ( mCN ` T ) = ( mCN ` T ) |
4 |
|
eqid |
|- ( mVR ` T ) = ( mVR ` T ) |
5 |
|
eqid |
|- ( mType ` T ) = ( mType ` T ) |
6 |
|
eqid |
|- ( mVT ` T ) = ( mVT ` T ) |
7 |
|
eqid |
|- ( mTC ` T ) = ( mTC ` T ) |
8 |
3 4 5 6 7 1 2
|
ismfs |
|- ( T e. mFS -> ( T e. mFS <-> ( ( ( ( mCN ` T ) i^i ( mVR ` T ) ) = (/) /\ ( mType ` T ) : ( mVR ` T ) --> ( mTC ` T ) ) /\ ( A C_ S /\ A. v e. ( mVT ` T ) -. ( `' ( mType ` T ) " { v } ) e. Fin ) ) ) ) |
9 |
8
|
ibi |
|- ( T e. mFS -> ( ( ( ( mCN ` T ) i^i ( mVR ` T ) ) = (/) /\ ( mType ` T ) : ( mVR ` T ) --> ( mTC ` T ) ) /\ ( A C_ S /\ A. v e. ( mVT ` T ) -. ( `' ( mType ` T ) " { v } ) e. Fin ) ) ) |
10 |
9
|
simprld |
|- ( T e. mFS -> A C_ S ) |