Metamath Proof Explorer


Theorem maxsta

Description: An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses maxsta.a A=mAxT
maxsta.s S=mStatT
Assertion maxsta TmFSAS

Proof

Step Hyp Ref Expression
1 maxsta.a A=mAxT
2 maxsta.s S=mStatT
3 eqid mCNT=mCNT
4 eqid mVRT=mVRT
5 eqid mTypeT=mTypeT
6 eqid mVTT=mVTT
7 eqid mTCT=mTCT
8 3 4 5 6 7 1 2 ismfs TmFSTmFSmCNTmVRT=mTypeT:mVRTmTCTASvmVTT¬mTypeT-1vFin
9 8 ibi TmFSmCNTmVRT=mTypeT:mVRTmTCTASvmVTT¬mTypeT-1vFin
10 9 simprld TmFSAS