Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Metamath formal systems
maxsta
Next ⟩
mvtinf
Metamath Proof Explorer
Ascii
Unicode
Theorem
maxsta
Description:
An axiom is a statement.
(Contributed by
Mario Carneiro
, 18-Jul-2016)
Ref
Expression
Hypotheses
maxsta.a
⊢
A
=
mAx
⁡
T
maxsta.s
⊢
S
=
mStat
⁡
T
Assertion
maxsta
⊢
T
∈
mFS
→
A
⊆
S
Proof
Step
Hyp
Ref
Expression
1
maxsta.a
⊢
A
=
mAx
⁡
T
2
maxsta.s
⊢
S
=
mStat
⁡
T
3
eqid
⊢
mCN
⁡
T
=
mCN
⁡
T
4
eqid
⊢
mVR
⁡
T
=
mVR
⁡
T
5
eqid
⊢
mType
⁡
T
=
mType
⁡
T
6
eqid
⊢
mVT
⁡
T
=
mVT
⁡
T
7
eqid
⊢
mTC
⁡
T
=
mTC
⁡
T
8
3
4
5
6
7
1
2
ismfs
⊢
T
∈
mFS
→
T
∈
mFS
↔
mCN
⁡
T
∩
mVR
⁡
T
=
∅
∧
mType
⁡
T
:
mVR
⁡
T
⟶
mTC
⁡
T
∧
A
⊆
S
∧
∀
v
∈
mVT
⁡
T
¬
mType
⁡
T
-1
v
∈
Fin
9
8
ibi
⊢
T
∈
mFS
→
mCN
⁡
T
∩
mVR
⁡
T
=
∅
∧
mType
⁡
T
:
mVR
⁡
T
⟶
mTC
⁡
T
∧
A
⊆
S
∧
∀
v
∈
mVT
⁡
T
¬
mType
⁡
T
-1
v
∈
Fin
10
9
simprld
⊢
T
∈
mFS
→
A
⊆
S