Metamath Proof Explorer


Theorem maxsta

Description: An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses maxsta.a A = mAx T
maxsta.s S = mStat T
Assertion maxsta T mFS A S

Proof

Step Hyp Ref Expression
1 maxsta.a A = mAx T
2 maxsta.s S = mStat T
3 eqid mCN T = mCN T
4 eqid mVR T = mVR T
5 eqid mType T = mType T
6 eqid mVT T = mVT T
7 eqid mTC T = mTC T
8 3 4 5 6 7 1 2 ismfs T mFS T mFS mCN T mVR T = mType T : mVR T mTC T A S v mVT T ¬ mType T -1 v Fin
9 8 ibi T mFS mCN T mVR T = mType T : mVR T mTC T A S v mVT T ¬ mType T -1 v Fin
10 9 simprld T mFS A S