Metamath Proof Explorer


Theorem mvtinf

Description: Each variable typecode has infinitely many variables. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvtinf.f F=mVTT
mvtinf.y Y=mTypeT
Assertion mvtinf TmFSXF¬Y-1XFin

Proof

Step Hyp Ref Expression
1 mvtinf.f F=mVTT
2 mvtinf.y Y=mTypeT
3 eqid mCNT=mCNT
4 eqid mVRT=mVRT
5 eqid mTCT=mTCT
6 eqid mAxT=mAxT
7 eqid mStatT=mStatT
8 3 4 2 1 5 6 7 ismfs TmFSTmFSmCNTmVRT=Y:mVRTmTCTmAxTmStatTvF¬Y-1vFin
9 8 ibi TmFSmCNTmVRT=Y:mVRTmTCTmAxTmStatTvF¬Y-1vFin
10 9 simprrd TmFSvF¬Y-1vFin
11 sneq v=Xv=X
12 11 imaeq2d v=XY-1v=Y-1X
13 12 eleq1d v=XY-1vFinY-1XFin
14 13 notbid v=X¬Y-1vFin¬Y-1XFin
15 14 rspccva vF¬Y-1vFinXF¬Y-1XFin
16 10 15 sylan TmFSXF¬Y-1XFin