| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mvtinf.f |
|- F = ( mVT ` T ) |
| 2 |
|
mvtinf.y |
|- Y = ( mType ` T ) |
| 3 |
|
eqid |
|- ( mCN ` T ) = ( mCN ` T ) |
| 4 |
|
eqid |
|- ( mVR ` T ) = ( mVR ` T ) |
| 5 |
|
eqid |
|- ( mTC ` T ) = ( mTC ` T ) |
| 6 |
|
eqid |
|- ( mAx ` T ) = ( mAx ` T ) |
| 7 |
|
eqid |
|- ( mStat ` T ) = ( mStat ` T ) |
| 8 |
3 4 2 1 5 6 7
|
ismfs |
|- ( T e. mFS -> ( T e. mFS <-> ( ( ( ( mCN ` T ) i^i ( mVR ` T ) ) = (/) /\ Y : ( mVR ` T ) --> ( mTC ` T ) ) /\ ( ( mAx ` T ) C_ ( mStat ` T ) /\ A. v e. F -. ( `' Y " { v } ) e. Fin ) ) ) ) |
| 9 |
8
|
ibi |
|- ( T e. mFS -> ( ( ( ( mCN ` T ) i^i ( mVR ` T ) ) = (/) /\ Y : ( mVR ` T ) --> ( mTC ` T ) ) /\ ( ( mAx ` T ) C_ ( mStat ` T ) /\ A. v e. F -. ( `' Y " { v } ) e. Fin ) ) ) |
| 10 |
9
|
simprrd |
|- ( T e. mFS -> A. v e. F -. ( `' Y " { v } ) e. Fin ) |
| 11 |
|
sneq |
|- ( v = X -> { v } = { X } ) |
| 12 |
11
|
imaeq2d |
|- ( v = X -> ( `' Y " { v } ) = ( `' Y " { X } ) ) |
| 13 |
12
|
eleq1d |
|- ( v = X -> ( ( `' Y " { v } ) e. Fin <-> ( `' Y " { X } ) e. Fin ) ) |
| 14 |
13
|
notbid |
|- ( v = X -> ( -. ( `' Y " { v } ) e. Fin <-> -. ( `' Y " { X } ) e. Fin ) ) |
| 15 |
14
|
rspccva |
|- ( ( A. v e. F -. ( `' Y " { v } ) e. Fin /\ X e. F ) -> -. ( `' Y " { X } ) e. Fin ) |
| 16 |
10 15
|
sylan |
|- ( ( T e. mFS /\ X e. F ) -> -. ( `' Y " { X } ) e. Fin ) |