| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mvtinf.f |  |-  F = ( mVT ` T ) | 
						
							| 2 |  | mvtinf.y |  |-  Y = ( mType ` T ) | 
						
							| 3 |  | eqid |  |-  ( mCN ` T ) = ( mCN ` T ) | 
						
							| 4 |  | eqid |  |-  ( mVR ` T ) = ( mVR ` T ) | 
						
							| 5 |  | eqid |  |-  ( mTC ` T ) = ( mTC ` T ) | 
						
							| 6 |  | eqid |  |-  ( mAx ` T ) = ( mAx ` T ) | 
						
							| 7 |  | eqid |  |-  ( mStat ` T ) = ( mStat ` T ) | 
						
							| 8 | 3 4 2 1 5 6 7 | ismfs |  |-  ( T e. mFS -> ( T e. mFS <-> ( ( ( ( mCN ` T ) i^i ( mVR ` T ) ) = (/) /\ Y : ( mVR ` T ) --> ( mTC ` T ) ) /\ ( ( mAx ` T ) C_ ( mStat ` T ) /\ A. v e. F -. ( `' Y " { v } ) e. Fin ) ) ) ) | 
						
							| 9 | 8 | ibi |  |-  ( T e. mFS -> ( ( ( ( mCN ` T ) i^i ( mVR ` T ) ) = (/) /\ Y : ( mVR ` T ) --> ( mTC ` T ) ) /\ ( ( mAx ` T ) C_ ( mStat ` T ) /\ A. v e. F -. ( `' Y " { v } ) e. Fin ) ) ) | 
						
							| 10 | 9 | simprrd |  |-  ( T e. mFS -> A. v e. F -. ( `' Y " { v } ) e. Fin ) | 
						
							| 11 |  | sneq |  |-  ( v = X -> { v } = { X } ) | 
						
							| 12 | 11 | imaeq2d |  |-  ( v = X -> ( `' Y " { v } ) = ( `' Y " { X } ) ) | 
						
							| 13 | 12 | eleq1d |  |-  ( v = X -> ( ( `' Y " { v } ) e. Fin <-> ( `' Y " { X } ) e. Fin ) ) | 
						
							| 14 | 13 | notbid |  |-  ( v = X -> ( -. ( `' Y " { v } ) e. Fin <-> -. ( `' Y " { X } ) e. Fin ) ) | 
						
							| 15 | 14 | rspccva |  |-  ( ( A. v e. F -. ( `' Y " { v } ) e. Fin /\ X e. F ) -> -. ( `' Y " { X } ) e. Fin ) | 
						
							| 16 | 10 15 | sylan |  |-  ( ( T e. mFS /\ X e. F ) -> -. ( `' Y " { X } ) e. Fin ) |