| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mvtinf.f |
⊢ 𝐹 = ( mVT ‘ 𝑇 ) |
| 2 |
|
mvtinf.y |
⊢ 𝑌 = ( mType ‘ 𝑇 ) |
| 3 |
|
eqid |
⊢ ( mCN ‘ 𝑇 ) = ( mCN ‘ 𝑇 ) |
| 4 |
|
eqid |
⊢ ( mVR ‘ 𝑇 ) = ( mVR ‘ 𝑇 ) |
| 5 |
|
eqid |
⊢ ( mTC ‘ 𝑇 ) = ( mTC ‘ 𝑇 ) |
| 6 |
|
eqid |
⊢ ( mAx ‘ 𝑇 ) = ( mAx ‘ 𝑇 ) |
| 7 |
|
eqid |
⊢ ( mStat ‘ 𝑇 ) = ( mStat ‘ 𝑇 ) |
| 8 |
3 4 2 1 5 6 7
|
ismfs |
⊢ ( 𝑇 ∈ mFS → ( 𝑇 ∈ mFS ↔ ( ( ( ( mCN ‘ 𝑇 ) ∩ ( mVR ‘ 𝑇 ) ) = ∅ ∧ 𝑌 : ( mVR ‘ 𝑇 ) ⟶ ( mTC ‘ 𝑇 ) ) ∧ ( ( mAx ‘ 𝑇 ) ⊆ ( mStat ‘ 𝑇 ) ∧ ∀ 𝑣 ∈ 𝐹 ¬ ( ◡ 𝑌 “ { 𝑣 } ) ∈ Fin ) ) ) ) |
| 9 |
8
|
ibi |
⊢ ( 𝑇 ∈ mFS → ( ( ( ( mCN ‘ 𝑇 ) ∩ ( mVR ‘ 𝑇 ) ) = ∅ ∧ 𝑌 : ( mVR ‘ 𝑇 ) ⟶ ( mTC ‘ 𝑇 ) ) ∧ ( ( mAx ‘ 𝑇 ) ⊆ ( mStat ‘ 𝑇 ) ∧ ∀ 𝑣 ∈ 𝐹 ¬ ( ◡ 𝑌 “ { 𝑣 } ) ∈ Fin ) ) ) |
| 10 |
9
|
simprrd |
⊢ ( 𝑇 ∈ mFS → ∀ 𝑣 ∈ 𝐹 ¬ ( ◡ 𝑌 “ { 𝑣 } ) ∈ Fin ) |
| 11 |
|
sneq |
⊢ ( 𝑣 = 𝑋 → { 𝑣 } = { 𝑋 } ) |
| 12 |
11
|
imaeq2d |
⊢ ( 𝑣 = 𝑋 → ( ◡ 𝑌 “ { 𝑣 } ) = ( ◡ 𝑌 “ { 𝑋 } ) ) |
| 13 |
12
|
eleq1d |
⊢ ( 𝑣 = 𝑋 → ( ( ◡ 𝑌 “ { 𝑣 } ) ∈ Fin ↔ ( ◡ 𝑌 “ { 𝑋 } ) ∈ Fin ) ) |
| 14 |
13
|
notbid |
⊢ ( 𝑣 = 𝑋 → ( ¬ ( ◡ 𝑌 “ { 𝑣 } ) ∈ Fin ↔ ¬ ( ◡ 𝑌 “ { 𝑋 } ) ∈ Fin ) ) |
| 15 |
14
|
rspccva |
⊢ ( ( ∀ 𝑣 ∈ 𝐹 ¬ ( ◡ 𝑌 “ { 𝑣 } ) ∈ Fin ∧ 𝑋 ∈ 𝐹 ) → ¬ ( ◡ 𝑌 “ { 𝑋 } ) ∈ Fin ) |
| 16 |
10 15
|
sylan |
⊢ ( ( 𝑇 ∈ mFS ∧ 𝑋 ∈ 𝐹 ) → ¬ ( ◡ 𝑌 “ { 𝑋 } ) ∈ Fin ) |