| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mvtinf.f | ⊢ 𝐹  =  ( mVT ‘ 𝑇 ) | 
						
							| 2 |  | mvtinf.y | ⊢ 𝑌  =  ( mType ‘ 𝑇 ) | 
						
							| 3 |  | eqid | ⊢ ( mCN ‘ 𝑇 )  =  ( mCN ‘ 𝑇 ) | 
						
							| 4 |  | eqid | ⊢ ( mVR ‘ 𝑇 )  =  ( mVR ‘ 𝑇 ) | 
						
							| 5 |  | eqid | ⊢ ( mTC ‘ 𝑇 )  =  ( mTC ‘ 𝑇 ) | 
						
							| 6 |  | eqid | ⊢ ( mAx ‘ 𝑇 )  =  ( mAx ‘ 𝑇 ) | 
						
							| 7 |  | eqid | ⊢ ( mStat ‘ 𝑇 )  =  ( mStat ‘ 𝑇 ) | 
						
							| 8 | 3 4 2 1 5 6 7 | ismfs | ⊢ ( 𝑇  ∈  mFS  →  ( 𝑇  ∈  mFS  ↔  ( ( ( ( mCN ‘ 𝑇 )  ∩  ( mVR ‘ 𝑇 ) )  =  ∅  ∧  𝑌 : ( mVR ‘ 𝑇 ) ⟶ ( mTC ‘ 𝑇 ) )  ∧  ( ( mAx ‘ 𝑇 )  ⊆  ( mStat ‘ 𝑇 )  ∧  ∀ 𝑣  ∈  𝐹 ¬  ( ◡ 𝑌  “  { 𝑣 } )  ∈  Fin ) ) ) ) | 
						
							| 9 | 8 | ibi | ⊢ ( 𝑇  ∈  mFS  →  ( ( ( ( mCN ‘ 𝑇 )  ∩  ( mVR ‘ 𝑇 ) )  =  ∅  ∧  𝑌 : ( mVR ‘ 𝑇 ) ⟶ ( mTC ‘ 𝑇 ) )  ∧  ( ( mAx ‘ 𝑇 )  ⊆  ( mStat ‘ 𝑇 )  ∧  ∀ 𝑣  ∈  𝐹 ¬  ( ◡ 𝑌  “  { 𝑣 } )  ∈  Fin ) ) ) | 
						
							| 10 | 9 | simprrd | ⊢ ( 𝑇  ∈  mFS  →  ∀ 𝑣  ∈  𝐹 ¬  ( ◡ 𝑌  “  { 𝑣 } )  ∈  Fin ) | 
						
							| 11 |  | sneq | ⊢ ( 𝑣  =  𝑋  →  { 𝑣 }  =  { 𝑋 } ) | 
						
							| 12 | 11 | imaeq2d | ⊢ ( 𝑣  =  𝑋  →  ( ◡ 𝑌  “  { 𝑣 } )  =  ( ◡ 𝑌  “  { 𝑋 } ) ) | 
						
							| 13 | 12 | eleq1d | ⊢ ( 𝑣  =  𝑋  →  ( ( ◡ 𝑌  “  { 𝑣 } )  ∈  Fin  ↔  ( ◡ 𝑌  “  { 𝑋 } )  ∈  Fin ) ) | 
						
							| 14 | 13 | notbid | ⊢ ( 𝑣  =  𝑋  →  ( ¬  ( ◡ 𝑌  “  { 𝑣 } )  ∈  Fin  ↔  ¬  ( ◡ 𝑌  “  { 𝑋 } )  ∈  Fin ) ) | 
						
							| 15 | 14 | rspccva | ⊢ ( ( ∀ 𝑣  ∈  𝐹 ¬  ( ◡ 𝑌  “  { 𝑣 } )  ∈  Fin  ∧  𝑋  ∈  𝐹 )  →  ¬  ( ◡ 𝑌  “  { 𝑋 } )  ∈  Fin ) | 
						
							| 16 | 10 15 | sylan | ⊢ ( ( 𝑇  ∈  mFS  ∧  𝑋  ∈  𝐹 )  →  ¬  ( ◡ 𝑌  “  { 𝑋 } )  ∈  Fin ) |