Metamath Proof Explorer


Theorem mvtinf

Description: Each variable typecode has infinitely many variables. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvtinf.f 𝐹 = ( mVT ‘ 𝑇 )
mvtinf.y 𝑌 = ( mType ‘ 𝑇 )
Assertion mvtinf ( ( 𝑇 ∈ mFS ∧ 𝑋𝐹 ) → ¬ ( 𝑌 “ { 𝑋 } ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 mvtinf.f 𝐹 = ( mVT ‘ 𝑇 )
2 mvtinf.y 𝑌 = ( mType ‘ 𝑇 )
3 eqid ( mCN ‘ 𝑇 ) = ( mCN ‘ 𝑇 )
4 eqid ( mVR ‘ 𝑇 ) = ( mVR ‘ 𝑇 )
5 eqid ( mTC ‘ 𝑇 ) = ( mTC ‘ 𝑇 )
6 eqid ( mAx ‘ 𝑇 ) = ( mAx ‘ 𝑇 )
7 eqid ( mStat ‘ 𝑇 ) = ( mStat ‘ 𝑇 )
8 3 4 2 1 5 6 7 ismfs ( 𝑇 ∈ mFS → ( 𝑇 ∈ mFS ↔ ( ( ( ( mCN ‘ 𝑇 ) ∩ ( mVR ‘ 𝑇 ) ) = ∅ ∧ 𝑌 : ( mVR ‘ 𝑇 ) ⟶ ( mTC ‘ 𝑇 ) ) ∧ ( ( mAx ‘ 𝑇 ) ⊆ ( mStat ‘ 𝑇 ) ∧ ∀ 𝑣𝐹 ¬ ( 𝑌 “ { 𝑣 } ) ∈ Fin ) ) ) )
9 8 ibi ( 𝑇 ∈ mFS → ( ( ( ( mCN ‘ 𝑇 ) ∩ ( mVR ‘ 𝑇 ) ) = ∅ ∧ 𝑌 : ( mVR ‘ 𝑇 ) ⟶ ( mTC ‘ 𝑇 ) ) ∧ ( ( mAx ‘ 𝑇 ) ⊆ ( mStat ‘ 𝑇 ) ∧ ∀ 𝑣𝐹 ¬ ( 𝑌 “ { 𝑣 } ) ∈ Fin ) ) )
10 9 simprrd ( 𝑇 ∈ mFS → ∀ 𝑣𝐹 ¬ ( 𝑌 “ { 𝑣 } ) ∈ Fin )
11 sneq ( 𝑣 = 𝑋 → { 𝑣 } = { 𝑋 } )
12 11 imaeq2d ( 𝑣 = 𝑋 → ( 𝑌 “ { 𝑣 } ) = ( 𝑌 “ { 𝑋 } ) )
13 12 eleq1d ( 𝑣 = 𝑋 → ( ( 𝑌 “ { 𝑣 } ) ∈ Fin ↔ ( 𝑌 “ { 𝑋 } ) ∈ Fin ) )
14 13 notbid ( 𝑣 = 𝑋 → ( ¬ ( 𝑌 “ { 𝑣 } ) ∈ Fin ↔ ¬ ( 𝑌 “ { 𝑋 } ) ∈ Fin ) )
15 14 rspccva ( ( ∀ 𝑣𝐹 ¬ ( 𝑌 “ { 𝑣 } ) ∈ Fin ∧ 𝑋𝐹 ) → ¬ ( 𝑌 “ { 𝑋 } ) ∈ Fin )
16 10 15 sylan ( ( 𝑇 ∈ mFS ∧ 𝑋𝐹 ) → ¬ ( 𝑌 “ { 𝑋 } ) ∈ Fin )