Metamath Proof Explorer


Theorem msubff1

Description: When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msubff1.v 𝑉 = ( mVR ‘ 𝑇 )
msubff1.r 𝑅 = ( mREx ‘ 𝑇 )
msubff1.s 𝑆 = ( mSubst ‘ 𝑇 )
msubff1.e 𝐸 = ( mEx ‘ 𝑇 )
Assertion msubff1 ( 𝑇 ∈ mFS → ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1→ ( 𝐸m 𝐸 ) )

Proof

Step Hyp Ref Expression
1 msubff1.v 𝑉 = ( mVR ‘ 𝑇 )
2 msubff1.r 𝑅 = ( mREx ‘ 𝑇 )
3 msubff1.s 𝑆 = ( mSubst ‘ 𝑇 )
4 msubff1.e 𝐸 = ( mEx ‘ 𝑇 )
5 1 2 3 4 msubff ( 𝑇 ∈ mFS → 𝑆 : ( 𝑅pm 𝑉 ) ⟶ ( 𝐸m 𝐸 ) )
6 mapsspm ( 𝑅m 𝑉 ) ⊆ ( 𝑅pm 𝑉 )
7 6 a1i ( 𝑇 ∈ mFS → ( 𝑅m 𝑉 ) ⊆ ( 𝑅pm 𝑉 ) )
8 5 7 fssresd ( 𝑇 ∈ mFS → ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) ⟶ ( 𝐸m 𝐸 ) )
9 eqid ( mRSubst ‘ 𝑇 ) = ( mRSubst ‘ 𝑇 )
10 1 2 9 mrsubff ( 𝑇 ∈ mFS → ( mRSubst ‘ 𝑇 ) : ( 𝑅pm 𝑉 ) ⟶ ( 𝑅m 𝑅 ) )
11 10 ad2antrr ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) → ( mRSubst ‘ 𝑇 ) : ( 𝑅pm 𝑉 ) ⟶ ( 𝑅m 𝑅 ) )
12 simplrl ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) → 𝑓 ∈ ( 𝑅m 𝑉 ) )
13 6 12 sselid ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) → 𝑓 ∈ ( 𝑅pm 𝑉 ) )
14 11 13 ffvelrnd ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ∈ ( 𝑅m 𝑅 ) )
15 elmapi ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ∈ ( 𝑅m 𝑅 ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) : 𝑅𝑅 )
16 ffn ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) : 𝑅𝑅 → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) Fn 𝑅 )
17 14 15 16 3syl ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) Fn 𝑅 )
18 simplrr ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) → 𝑔 ∈ ( 𝑅m 𝑉 ) )
19 6 18 sselid ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) → 𝑔 ∈ ( 𝑅pm 𝑉 ) )
20 11 19 ffvelrnd ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ∈ ( 𝑅m 𝑅 ) )
21 elmapi ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ∈ ( 𝑅m 𝑅 ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) : 𝑅𝑅 )
22 ffn ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) : 𝑅𝑅 → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) Fn 𝑅 )
23 20 21 22 3syl ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) Fn 𝑅 )
24 simplrr ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) ∧ 𝑟𝑅 ) → ( 𝑆𝑓 ) = ( 𝑆𝑔 ) )
25 24 fveq1d ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) ∧ 𝑟𝑅 ) → ( ( 𝑆𝑓 ) ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) = ( ( 𝑆𝑔 ) ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) )
26 12 adantr ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) ∧ 𝑟𝑅 ) → 𝑓 ∈ ( 𝑅m 𝑉 ) )
27 elmapi ( 𝑓 ∈ ( 𝑅m 𝑉 ) → 𝑓 : 𝑉𝑅 )
28 26 27 syl ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) ∧ 𝑟𝑅 ) → 𝑓 : 𝑉𝑅 )
29 ssidd ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) ∧ 𝑟𝑅 ) → 𝑉𝑉 )
30 eqid ( mTC ‘ 𝑇 ) = ( mTC ‘ 𝑇 )
31 eqid ( mType ‘ 𝑇 ) = ( mType ‘ 𝑇 )
32 1 30 31 mtyf2 ( 𝑇 ∈ mFS → ( mType ‘ 𝑇 ) : 𝑉 ⟶ ( mTC ‘ 𝑇 ) )
33 32 ad3antrrr ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) ∧ 𝑟𝑅 ) → ( mType ‘ 𝑇 ) : 𝑉 ⟶ ( mTC ‘ 𝑇 ) )
34 simplrl ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) ∧ 𝑟𝑅 ) → 𝑣𝑉 )
35 33 34 ffvelrnd ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) ∧ 𝑟𝑅 ) → ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ∈ ( mTC ‘ 𝑇 ) )
36 opelxpi ( ( ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ∈ ( mTC ‘ 𝑇 ) ∧ 𝑟𝑅 ) → ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ∈ ( ( mTC ‘ 𝑇 ) × 𝑅 ) )
37 35 36 sylancom ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) ∧ 𝑟𝑅 ) → ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ∈ ( ( mTC ‘ 𝑇 ) × 𝑅 ) )
38 30 4 2 mexval 𝐸 = ( ( mTC ‘ 𝑇 ) × 𝑅 )
39 37 38 eleqtrrdi ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) ∧ 𝑟𝑅 ) → ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ∈ 𝐸 )
40 1 2 3 4 9 msubval ( ( 𝑓 : 𝑉𝑅𝑉𝑉 ∧ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ∈ 𝐸 ) → ( ( 𝑆𝑓 ) ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) = ⟨ ( 1st ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) ⟩ )
41 28 29 39 40 syl3anc ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) ∧ 𝑟𝑅 ) → ( ( 𝑆𝑓 ) ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) = ⟨ ( 1st ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) ⟩ )
42 18 adantr ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) ∧ 𝑟𝑅 ) → 𝑔 ∈ ( 𝑅m 𝑉 ) )
43 elmapi ( 𝑔 ∈ ( 𝑅m 𝑉 ) → 𝑔 : 𝑉𝑅 )
44 42 43 syl ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) ∧ 𝑟𝑅 ) → 𝑔 : 𝑉𝑅 )
45 1 2 3 4 9 msubval ( ( 𝑔 : 𝑉𝑅𝑉𝑉 ∧ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ∈ 𝐸 ) → ( ( 𝑆𝑔 ) ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) = ⟨ ( 1st ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) ⟩ )
46 44 29 39 45 syl3anc ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) ∧ 𝑟𝑅 ) → ( ( 𝑆𝑔 ) ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) = ⟨ ( 1st ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) ⟩ )
47 25 41 46 3eqtr3d ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) ∧ 𝑟𝑅 ) → ⟨ ( 1st ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) ⟩ = ⟨ ( 1st ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) ⟩ )
48 fvex ( 1st ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ∈ V
49 fvex ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) ∈ V
50 48 49 opth ( ⟨ ( 1st ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) ⟩ = ⟨ ( 1st ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) ⟩ ↔ ( ( 1st ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) = ( 1st ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ∧ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) = ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) ) )
51 50 simprbi ( ⟨ ( 1st ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) ⟩ = ⟨ ( 1st ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) ⟩ → ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) = ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) )
52 47 51 syl ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) ∧ 𝑟𝑅 ) → ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) = ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) )
53 fvex ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ∈ V
54 vex 𝑟 ∈ V
55 53 54 op2nd ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) = 𝑟
56 55 fveq2i ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) = ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ 𝑟 )
57 55 fveq2i ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ ⟨ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 ⟩ ) ) = ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ 𝑟 )
58 52 56 57 3eqtr3g ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) ∧ 𝑟𝑅 ) → ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ 𝑟 ) = ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ 𝑟 ) )
59 17 23 58 eqfnfvd ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) )
60 1 2 9 mrsubff1 ( 𝑇 ∈ mFS → ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1→ ( 𝑅m 𝑅 ) )
61 f1fveq ( ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1→ ( 𝑅m 𝑅 ) ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) → ( ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑓 ) = ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑔 ) ↔ 𝑓 = 𝑔 ) )
62 60 61 sylan ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) → ( ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑓 ) = ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑔 ) ↔ 𝑓 = 𝑔 ) )
63 fvres ( 𝑓 ∈ ( 𝑅m 𝑉 ) → ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑓 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) )
64 fvres ( 𝑔 ∈ ( 𝑅m 𝑉 ) → ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑔 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) )
65 63 64 eqeqan12d ( ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) → ( ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑓 ) = ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑔 ) ↔ ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ) )
66 65 adantl ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) → ( ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑓 ) = ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑔 ) ↔ ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ) )
67 62 66 bitr3d ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) → ( 𝑓 = 𝑔 ↔ ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ) )
68 67 adantr ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) → ( 𝑓 = 𝑔 ↔ ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ) )
69 59 68 mpbird ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) → 𝑓 = 𝑔 )
70 69 fveq1d ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ ( 𝑣𝑉 ∧ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) ) → ( 𝑓𝑣 ) = ( 𝑔𝑣 ) )
71 70 expr ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) ∧ 𝑣𝑉 ) → ( ( 𝑆𝑓 ) = ( 𝑆𝑔 ) → ( 𝑓𝑣 ) = ( 𝑔𝑣 ) ) )
72 71 ralrimdva ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) → ( ( 𝑆𝑓 ) = ( 𝑆𝑔 ) → ∀ 𝑣𝑉 ( 𝑓𝑣 ) = ( 𝑔𝑣 ) ) )
73 fvres ( 𝑓 ∈ ( 𝑅m 𝑉 ) → ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑓 ) = ( 𝑆𝑓 ) )
74 fvres ( 𝑔 ∈ ( 𝑅m 𝑉 ) → ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑔 ) = ( 𝑆𝑔 ) )
75 73 74 eqeqan12d ( ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) → ( ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑓 ) = ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑔 ) ↔ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) )
76 75 adantl ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) → ( ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑓 ) = ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑔 ) ↔ ( 𝑆𝑓 ) = ( 𝑆𝑔 ) ) )
77 ffn ( 𝑓 : 𝑉𝑅𝑓 Fn 𝑉 )
78 ffn ( 𝑔 : 𝑉𝑅𝑔 Fn 𝑉 )
79 eqfnfv ( ( 𝑓 Fn 𝑉𝑔 Fn 𝑉 ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑣𝑉 ( 𝑓𝑣 ) = ( 𝑔𝑣 ) ) )
80 77 78 79 syl2an ( ( 𝑓 : 𝑉𝑅𝑔 : 𝑉𝑅 ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑣𝑉 ( 𝑓𝑣 ) = ( 𝑔𝑣 ) ) )
81 27 43 80 syl2an ( ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑣𝑉 ( 𝑓𝑣 ) = ( 𝑔𝑣 ) ) )
82 81 adantl ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑣𝑉 ( 𝑓𝑣 ) = ( 𝑔𝑣 ) ) )
83 72 76 82 3imtr4d ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅m 𝑉 ) ) ) → ( ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑓 ) = ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) )
84 83 ralrimivva ( 𝑇 ∈ mFS → ∀ 𝑓 ∈ ( 𝑅m 𝑉 ) ∀ 𝑔 ∈ ( 𝑅m 𝑉 ) ( ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑓 ) = ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) )
85 dff13 ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1→ ( 𝐸m 𝐸 ) ↔ ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) ⟶ ( 𝐸m 𝐸 ) ∧ ∀ 𝑓 ∈ ( 𝑅m 𝑉 ) ∀ 𝑔 ∈ ( 𝑅m 𝑉 ) ( ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑓 ) = ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) )
86 8 84 85 sylanbrc ( 𝑇 ∈ mFS → ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1→ ( 𝐸m 𝐸 ) )