| Step | Hyp | Ref | Expression | 
						
							| 1 |  | msubff1.v | ⊢ 𝑉  =  ( mVR ‘ 𝑇 ) | 
						
							| 2 |  | msubff1.r | ⊢ 𝑅  =  ( mREx ‘ 𝑇 ) | 
						
							| 3 |  | msubff1.s | ⊢ 𝑆  =  ( mSubst ‘ 𝑇 ) | 
						
							| 4 |  | msubff1.e | ⊢ 𝐸  =  ( mEx ‘ 𝑇 ) | 
						
							| 5 | 1 2 3 4 | msubff | ⊢ ( 𝑇  ∈  mFS  →  𝑆 : ( 𝑅  ↑pm  𝑉 ) ⟶ ( 𝐸  ↑m  𝐸 ) ) | 
						
							| 6 |  | mapsspm | ⊢ ( 𝑅  ↑m  𝑉 )  ⊆  ( 𝑅  ↑pm  𝑉 ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑇  ∈  mFS  →  ( 𝑅  ↑m  𝑉 )  ⊆  ( 𝑅  ↑pm  𝑉 ) ) | 
						
							| 8 | 5 7 | fssresd | ⊢ ( 𝑇  ∈  mFS  →  ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) : ( 𝑅  ↑m  𝑉 ) ⟶ ( 𝐸  ↑m  𝐸 ) ) | 
						
							| 9 |  | eqid | ⊢ ( mRSubst ‘ 𝑇 )  =  ( mRSubst ‘ 𝑇 ) | 
						
							| 10 | 1 2 9 | mrsubff | ⊢ ( 𝑇  ∈  mFS  →  ( mRSubst ‘ 𝑇 ) : ( 𝑅  ↑pm  𝑉 ) ⟶ ( 𝑅  ↑m  𝑅 ) ) | 
						
							| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  →  ( mRSubst ‘ 𝑇 ) : ( 𝑅  ↑pm  𝑉 ) ⟶ ( 𝑅  ↑m  𝑅 ) ) | 
						
							| 12 |  | simplrl | ⊢ ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  →  𝑓  ∈  ( 𝑅  ↑m  𝑉 ) ) | 
						
							| 13 | 6 12 | sselid | ⊢ ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  →  𝑓  ∈  ( 𝑅  ↑pm  𝑉 ) ) | 
						
							| 14 | 11 13 | ffvelcdmd | ⊢ ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  →  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 )  ∈  ( 𝑅  ↑m  𝑅 ) ) | 
						
							| 15 |  | elmapi | ⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 )  ∈  ( 𝑅  ↑m  𝑅 )  →  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) : 𝑅 ⟶ 𝑅 ) | 
						
							| 16 |  | ffn | ⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) : 𝑅 ⟶ 𝑅  →  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 )  Fn  𝑅 ) | 
						
							| 17 | 14 15 16 | 3syl | ⊢ ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  →  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 )  Fn  𝑅 ) | 
						
							| 18 |  | simplrr | ⊢ ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  →  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) | 
						
							| 19 | 6 18 | sselid | ⊢ ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  →  𝑔  ∈  ( 𝑅  ↑pm  𝑉 ) ) | 
						
							| 20 | 11 19 | ffvelcdmd | ⊢ ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  →  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 )  ∈  ( 𝑅  ↑m  𝑅 ) ) | 
						
							| 21 |  | elmapi | ⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 )  ∈  ( 𝑅  ↑m  𝑅 )  →  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) : 𝑅 ⟶ 𝑅 ) | 
						
							| 22 |  | ffn | ⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) : 𝑅 ⟶ 𝑅  →  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 )  Fn  𝑅 ) | 
						
							| 23 | 20 21 22 | 3syl | ⊢ ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  →  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 )  Fn  𝑅 ) | 
						
							| 24 |  | simplrr | ⊢ ( ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  ∧  𝑟  ∈  𝑅 )  →  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) | 
						
							| 25 | 24 | fveq1d | ⊢ ( ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  ∧  𝑟  ∈  𝑅 )  →  ( ( 𝑆 ‘ 𝑓 ) ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 )  =  ( ( 𝑆 ‘ 𝑔 ) ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ) | 
						
							| 26 | 12 | adantr | ⊢ ( ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  ∧  𝑟  ∈  𝑅 )  →  𝑓  ∈  ( 𝑅  ↑m  𝑉 ) ) | 
						
							| 27 |  | elmapi | ⊢ ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  →  𝑓 : 𝑉 ⟶ 𝑅 ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  ∧  𝑟  ∈  𝑅 )  →  𝑓 : 𝑉 ⟶ 𝑅 ) | 
						
							| 29 |  | ssidd | ⊢ ( ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  ∧  𝑟  ∈  𝑅 )  →  𝑉  ⊆  𝑉 ) | 
						
							| 30 |  | eqid | ⊢ ( mTC ‘ 𝑇 )  =  ( mTC ‘ 𝑇 ) | 
						
							| 31 |  | eqid | ⊢ ( mType ‘ 𝑇 )  =  ( mType ‘ 𝑇 ) | 
						
							| 32 | 1 30 31 | mtyf2 | ⊢ ( 𝑇  ∈  mFS  →  ( mType ‘ 𝑇 ) : 𝑉 ⟶ ( mTC ‘ 𝑇 ) ) | 
						
							| 33 | 32 | ad3antrrr | ⊢ ( ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  ∧  𝑟  ∈  𝑅 )  →  ( mType ‘ 𝑇 ) : 𝑉 ⟶ ( mTC ‘ 𝑇 ) ) | 
						
							| 34 |  | simplrl | ⊢ ( ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  ∧  𝑟  ∈  𝑅 )  →  𝑣  ∈  𝑉 ) | 
						
							| 35 | 33 34 | ffvelcdmd | ⊢ ( ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  ∧  𝑟  ∈  𝑅 )  →  ( ( mType ‘ 𝑇 ) ‘ 𝑣 )  ∈  ( mTC ‘ 𝑇 ) ) | 
						
							| 36 |  | opelxpi | ⊢ ( ( ( ( mType ‘ 𝑇 ) ‘ 𝑣 )  ∈  ( mTC ‘ 𝑇 )  ∧  𝑟  ∈  𝑅 )  →  〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉  ∈  ( ( mTC ‘ 𝑇 )  ×  𝑅 ) ) | 
						
							| 37 | 35 36 | sylancom | ⊢ ( ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  ∧  𝑟  ∈  𝑅 )  →  〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉  ∈  ( ( mTC ‘ 𝑇 )  ×  𝑅 ) ) | 
						
							| 38 | 30 4 2 | mexval | ⊢ 𝐸  =  ( ( mTC ‘ 𝑇 )  ×  𝑅 ) | 
						
							| 39 | 37 38 | eleqtrrdi | ⊢ ( ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  ∧  𝑟  ∈  𝑅 )  →  〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉  ∈  𝐸 ) | 
						
							| 40 | 1 2 3 4 9 | msubval | ⊢ ( ( 𝑓 : 𝑉 ⟶ 𝑅  ∧  𝑉  ⊆  𝑉  ∧  〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉  ∈  𝐸 )  →  ( ( 𝑆 ‘ 𝑓 ) ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 )  =  〈 ( 1st  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ,  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ) 〉 ) | 
						
							| 41 | 28 29 39 40 | syl3anc | ⊢ ( ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  ∧  𝑟  ∈  𝑅 )  →  ( ( 𝑆 ‘ 𝑓 ) ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 )  =  〈 ( 1st  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ,  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ) 〉 ) | 
						
							| 42 | 18 | adantr | ⊢ ( ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  ∧  𝑟  ∈  𝑅 )  →  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) | 
						
							| 43 |  | elmapi | ⊢ ( 𝑔  ∈  ( 𝑅  ↑m  𝑉 )  →  𝑔 : 𝑉 ⟶ 𝑅 ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  ∧  𝑟  ∈  𝑅 )  →  𝑔 : 𝑉 ⟶ 𝑅 ) | 
						
							| 45 | 1 2 3 4 9 | msubval | ⊢ ( ( 𝑔 : 𝑉 ⟶ 𝑅  ∧  𝑉  ⊆  𝑉  ∧  〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉  ∈  𝐸 )  →  ( ( 𝑆 ‘ 𝑔 ) ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 )  =  〈 ( 1st  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ,  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ) 〉 ) | 
						
							| 46 | 44 29 39 45 | syl3anc | ⊢ ( ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  ∧  𝑟  ∈  𝑅 )  →  ( ( 𝑆 ‘ 𝑔 ) ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 )  =  〈 ( 1st  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ,  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ) 〉 ) | 
						
							| 47 | 25 41 46 | 3eqtr3d | ⊢ ( ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  ∧  𝑟  ∈  𝑅 )  →  〈 ( 1st  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ,  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ) 〉  =  〈 ( 1st  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ,  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ) 〉 ) | 
						
							| 48 |  | fvex | ⊢ ( 1st  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 )  ∈  V | 
						
							| 49 |  | fvex | ⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) )  ∈  V | 
						
							| 50 | 48 49 | opth | ⊢ ( 〈 ( 1st  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ,  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ) 〉  =  〈 ( 1st  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ,  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ) 〉  ↔  ( ( 1st  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 )  =  ( 1st  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 )  ∧  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) )  =  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ) ) ) | 
						
							| 51 | 50 | simprbi | ⊢ ( 〈 ( 1st  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ,  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ) 〉  =  〈 ( 1st  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ,  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ) 〉  →  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) )  =  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ) ) | 
						
							| 52 | 47 51 | syl | ⊢ ( ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  ∧  𝑟  ∈  𝑅 )  →  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) )  =  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) ) ) | 
						
							| 53 |  | fvex | ⊢ ( ( mType ‘ 𝑇 ) ‘ 𝑣 )  ∈  V | 
						
							| 54 |  | vex | ⊢ 𝑟  ∈  V | 
						
							| 55 | 53 54 | op2nd | ⊢ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 )  =  𝑟 | 
						
							| 56 | 55 | fveq2i | ⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) )  =  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ 𝑟 ) | 
						
							| 57 | 55 | fveq2i | ⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd  ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ,  𝑟 〉 ) )  =  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ 𝑟 ) | 
						
							| 58 | 52 56 57 | 3eqtr3g | ⊢ ( ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  ∧  𝑟  ∈  𝑅 )  →  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ 𝑟 )  =  ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ 𝑟 ) ) | 
						
							| 59 | 17 23 58 | eqfnfvd | ⊢ ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  →  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 )  =  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ) | 
						
							| 60 | 1 2 9 | mrsubff1 | ⊢ ( 𝑇  ∈  mFS  →  ( ( mRSubst ‘ 𝑇 )  ↾  ( 𝑅  ↑m  𝑉 ) ) : ( 𝑅  ↑m  𝑉 ) –1-1→ ( 𝑅  ↑m  𝑅 ) ) | 
						
							| 61 |  | f1fveq | ⊢ ( ( ( ( mRSubst ‘ 𝑇 )  ↾  ( 𝑅  ↑m  𝑉 ) ) : ( 𝑅  ↑m  𝑉 ) –1-1→ ( 𝑅  ↑m  𝑅 )  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  →  ( ( ( ( mRSubst ‘ 𝑇 )  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑓 )  =  ( ( ( mRSubst ‘ 𝑇 )  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑔 )  ↔  𝑓  =  𝑔 ) ) | 
						
							| 62 | 60 61 | sylan | ⊢ ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  →  ( ( ( ( mRSubst ‘ 𝑇 )  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑓 )  =  ( ( ( mRSubst ‘ 𝑇 )  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑔 )  ↔  𝑓  =  𝑔 ) ) | 
						
							| 63 |  | fvres | ⊢ ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  →  ( ( ( mRSubst ‘ 𝑇 )  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑓 )  =  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ) | 
						
							| 64 |  | fvres | ⊢ ( 𝑔  ∈  ( 𝑅  ↑m  𝑉 )  →  ( ( ( mRSubst ‘ 𝑇 )  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑔 )  =  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ) | 
						
							| 65 | 63 64 | eqeqan12d | ⊢ ( ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) )  →  ( ( ( ( mRSubst ‘ 𝑇 )  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑓 )  =  ( ( ( mRSubst ‘ 𝑇 )  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑔 )  ↔  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 )  =  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ) ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  →  ( ( ( ( mRSubst ‘ 𝑇 )  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑓 )  =  ( ( ( mRSubst ‘ 𝑇 )  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑔 )  ↔  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 )  =  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ) ) | 
						
							| 67 | 62 66 | bitr3d | ⊢ ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  →  ( 𝑓  =  𝑔  ↔  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 )  =  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ) ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  →  ( 𝑓  =  𝑔  ↔  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 )  =  ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ) ) | 
						
							| 69 | 59 68 | mpbird | ⊢ ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  →  𝑓  =  𝑔 ) | 
						
							| 70 | 69 | fveq1d | ⊢ ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  ( 𝑣  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) )  →  ( 𝑓 ‘ 𝑣 )  =  ( 𝑔 ‘ 𝑣 ) ) | 
						
							| 71 | 70 | expr | ⊢ ( ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 )  →  ( 𝑓 ‘ 𝑣 )  =  ( 𝑔 ‘ 𝑣 ) ) ) | 
						
							| 72 | 71 | ralrimdva | ⊢ ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  →  ( ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 )  →  ∀ 𝑣  ∈  𝑉 ( 𝑓 ‘ 𝑣 )  =  ( 𝑔 ‘ 𝑣 ) ) ) | 
						
							| 73 |  | fvres | ⊢ ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  →  ( ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑓 ) ) | 
						
							| 74 |  | fvres | ⊢ ( 𝑔  ∈  ( 𝑅  ↑m  𝑉 )  →  ( ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑔 )  =  ( 𝑆 ‘ 𝑔 ) ) | 
						
							| 75 | 73 74 | eqeqan12d | ⊢ ( ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) )  →  ( ( ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑓 )  =  ( ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑔 )  ↔  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) ) | 
						
							| 76 | 75 | adantl | ⊢ ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  →  ( ( ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑓 )  =  ( ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑔 )  ↔  ( 𝑆 ‘ 𝑓 )  =  ( 𝑆 ‘ 𝑔 ) ) ) | 
						
							| 77 |  | ffn | ⊢ ( 𝑓 : 𝑉 ⟶ 𝑅  →  𝑓  Fn  𝑉 ) | 
						
							| 78 |  | ffn | ⊢ ( 𝑔 : 𝑉 ⟶ 𝑅  →  𝑔  Fn  𝑉 ) | 
						
							| 79 |  | eqfnfv | ⊢ ( ( 𝑓  Fn  𝑉  ∧  𝑔  Fn  𝑉 )  →  ( 𝑓  =  𝑔  ↔  ∀ 𝑣  ∈  𝑉 ( 𝑓 ‘ 𝑣 )  =  ( 𝑔 ‘ 𝑣 ) ) ) | 
						
							| 80 | 77 78 79 | syl2an | ⊢ ( ( 𝑓 : 𝑉 ⟶ 𝑅  ∧  𝑔 : 𝑉 ⟶ 𝑅 )  →  ( 𝑓  =  𝑔  ↔  ∀ 𝑣  ∈  𝑉 ( 𝑓 ‘ 𝑣 )  =  ( 𝑔 ‘ 𝑣 ) ) ) | 
						
							| 81 | 27 43 80 | syl2an | ⊢ ( ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) )  →  ( 𝑓  =  𝑔  ↔  ∀ 𝑣  ∈  𝑉 ( 𝑓 ‘ 𝑣 )  =  ( 𝑔 ‘ 𝑣 ) ) ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  →  ( 𝑓  =  𝑔  ↔  ∀ 𝑣  ∈  𝑉 ( 𝑓 ‘ 𝑣 )  =  ( 𝑔 ‘ 𝑣 ) ) ) | 
						
							| 83 | 72 76 82 | 3imtr4d | ⊢ ( ( 𝑇  ∈  mFS  ∧  ( 𝑓  ∈  ( 𝑅  ↑m  𝑉 )  ∧  𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ) )  →  ( ( ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑓 )  =  ( ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑔 )  →  𝑓  =  𝑔 ) ) | 
						
							| 84 | 83 | ralrimivva | ⊢ ( 𝑇  ∈  mFS  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  𝑉 ) ∀ 𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ( ( ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑓 )  =  ( ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑔 )  →  𝑓  =  𝑔 ) ) | 
						
							| 85 |  | dff13 | ⊢ ( ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) : ( 𝑅  ↑m  𝑉 ) –1-1→ ( 𝐸  ↑m  𝐸 )  ↔  ( ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) : ( 𝑅  ↑m  𝑉 ) ⟶ ( 𝐸  ↑m  𝐸 )  ∧  ∀ 𝑓  ∈  ( 𝑅  ↑m  𝑉 ) ∀ 𝑔  ∈  ( 𝑅  ↑m  𝑉 ) ( ( ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑓 )  =  ( ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) ‘ 𝑔 )  →  𝑓  =  𝑔 ) ) ) | 
						
							| 86 | 8 84 85 | sylanbrc | ⊢ ( 𝑇  ∈  mFS  →  ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) : ( 𝑅  ↑m  𝑉 ) –1-1→ ( 𝐸  ↑m  𝐸 ) ) |