Step |
Hyp |
Ref |
Expression |
1 |
|
msubff1.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
2 |
|
msubff1.r |
⊢ 𝑅 = ( mREx ‘ 𝑇 ) |
3 |
|
msubff1.s |
⊢ 𝑆 = ( mSubst ‘ 𝑇 ) |
4 |
|
msubff1.e |
⊢ 𝐸 = ( mEx ‘ 𝑇 ) |
5 |
1 2 3 4
|
msubff |
⊢ ( 𝑇 ∈ mFS → 𝑆 : ( 𝑅 ↑pm 𝑉 ) ⟶ ( 𝐸 ↑m 𝐸 ) ) |
6 |
|
mapsspm |
⊢ ( 𝑅 ↑m 𝑉 ) ⊆ ( 𝑅 ↑pm 𝑉 ) |
7 |
6
|
a1i |
⊢ ( 𝑇 ∈ mFS → ( 𝑅 ↑m 𝑉 ) ⊆ ( 𝑅 ↑pm 𝑉 ) ) |
8 |
5 7
|
fssresd |
⊢ ( 𝑇 ∈ mFS → ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) ⟶ ( 𝐸 ↑m 𝐸 ) ) |
9 |
|
eqid |
⊢ ( mRSubst ‘ 𝑇 ) = ( mRSubst ‘ 𝑇 ) |
10 |
1 2 9
|
mrsubff |
⊢ ( 𝑇 ∈ mFS → ( mRSubst ‘ 𝑇 ) : ( 𝑅 ↑pm 𝑉 ) ⟶ ( 𝑅 ↑m 𝑅 ) ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) → ( mRSubst ‘ 𝑇 ) : ( 𝑅 ↑pm 𝑉 ) ⟶ ( 𝑅 ↑m 𝑅 ) ) |
12 |
|
simplrl |
⊢ ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) → 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ) |
13 |
6 12
|
sselid |
⊢ ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) → 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) |
14 |
11 13
|
ffvelrnd |
⊢ ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ∈ ( 𝑅 ↑m 𝑅 ) ) |
15 |
|
elmapi |
⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ∈ ( 𝑅 ↑m 𝑅 ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) : 𝑅 ⟶ 𝑅 ) |
16 |
|
ffn |
⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) : 𝑅 ⟶ 𝑅 → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) Fn 𝑅 ) |
17 |
14 15 16
|
3syl |
⊢ ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) Fn 𝑅 ) |
18 |
|
simplrr |
⊢ ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) → 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) |
19 |
6 18
|
sselid |
⊢ ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) → 𝑔 ∈ ( 𝑅 ↑pm 𝑉 ) ) |
20 |
11 19
|
ffvelrnd |
⊢ ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ∈ ( 𝑅 ↑m 𝑅 ) ) |
21 |
|
elmapi |
⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ∈ ( 𝑅 ↑m 𝑅 ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) : 𝑅 ⟶ 𝑅 ) |
22 |
|
ffn |
⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) : 𝑅 ⟶ 𝑅 → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) Fn 𝑅 ) |
23 |
20 21 22
|
3syl |
⊢ ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) Fn 𝑅 ) |
24 |
|
simplrr |
⊢ ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) ∧ 𝑟 ∈ 𝑅 ) → ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) |
25 |
24
|
fveq1d |
⊢ ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) ∧ 𝑟 ∈ 𝑅 ) → ( ( 𝑆 ‘ 𝑓 ) ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) = ( ( 𝑆 ‘ 𝑔 ) ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) |
26 |
12
|
adantr |
⊢ ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) ∧ 𝑟 ∈ 𝑅 ) → 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ) |
27 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) → 𝑓 : 𝑉 ⟶ 𝑅 ) |
28 |
26 27
|
syl |
⊢ ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) ∧ 𝑟 ∈ 𝑅 ) → 𝑓 : 𝑉 ⟶ 𝑅 ) |
29 |
|
ssidd |
⊢ ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) ∧ 𝑟 ∈ 𝑅 ) → 𝑉 ⊆ 𝑉 ) |
30 |
|
eqid |
⊢ ( mTC ‘ 𝑇 ) = ( mTC ‘ 𝑇 ) |
31 |
|
eqid |
⊢ ( mType ‘ 𝑇 ) = ( mType ‘ 𝑇 ) |
32 |
1 30 31
|
mtyf2 |
⊢ ( 𝑇 ∈ mFS → ( mType ‘ 𝑇 ) : 𝑉 ⟶ ( mTC ‘ 𝑇 ) ) |
33 |
32
|
ad3antrrr |
⊢ ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) ∧ 𝑟 ∈ 𝑅 ) → ( mType ‘ 𝑇 ) : 𝑉 ⟶ ( mTC ‘ 𝑇 ) ) |
34 |
|
simplrl |
⊢ ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) ∧ 𝑟 ∈ 𝑅 ) → 𝑣 ∈ 𝑉 ) |
35 |
33 34
|
ffvelrnd |
⊢ ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) ∧ 𝑟 ∈ 𝑅 ) → ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ∈ ( mTC ‘ 𝑇 ) ) |
36 |
|
opelxpi |
⊢ ( ( ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ∈ ( mTC ‘ 𝑇 ) ∧ 𝑟 ∈ 𝑅 ) → 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ∈ ( ( mTC ‘ 𝑇 ) × 𝑅 ) ) |
37 |
35 36
|
sylancom |
⊢ ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) ∧ 𝑟 ∈ 𝑅 ) → 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ∈ ( ( mTC ‘ 𝑇 ) × 𝑅 ) ) |
38 |
30 4 2
|
mexval |
⊢ 𝐸 = ( ( mTC ‘ 𝑇 ) × 𝑅 ) |
39 |
37 38
|
eleqtrrdi |
⊢ ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) ∧ 𝑟 ∈ 𝑅 ) → 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ∈ 𝐸 ) |
40 |
1 2 3 4 9
|
msubval |
⊢ ( ( 𝑓 : 𝑉 ⟶ 𝑅 ∧ 𝑉 ⊆ 𝑉 ∧ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ∈ 𝐸 ) → ( ( 𝑆 ‘ 𝑓 ) ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) = 〈 ( 1st ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) 〉 ) |
41 |
28 29 39 40
|
syl3anc |
⊢ ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) ∧ 𝑟 ∈ 𝑅 ) → ( ( 𝑆 ‘ 𝑓 ) ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) = 〈 ( 1st ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) 〉 ) |
42 |
18
|
adantr |
⊢ ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) ∧ 𝑟 ∈ 𝑅 ) → 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) |
43 |
|
elmapi |
⊢ ( 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) → 𝑔 : 𝑉 ⟶ 𝑅 ) |
44 |
42 43
|
syl |
⊢ ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) ∧ 𝑟 ∈ 𝑅 ) → 𝑔 : 𝑉 ⟶ 𝑅 ) |
45 |
1 2 3 4 9
|
msubval |
⊢ ( ( 𝑔 : 𝑉 ⟶ 𝑅 ∧ 𝑉 ⊆ 𝑉 ∧ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ∈ 𝐸 ) → ( ( 𝑆 ‘ 𝑔 ) ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) = 〈 ( 1st ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) 〉 ) |
46 |
44 29 39 45
|
syl3anc |
⊢ ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) ∧ 𝑟 ∈ 𝑅 ) → ( ( 𝑆 ‘ 𝑔 ) ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) = 〈 ( 1st ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) 〉 ) |
47 |
25 41 46
|
3eqtr3d |
⊢ ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) ∧ 𝑟 ∈ 𝑅 ) → 〈 ( 1st ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) 〉 = 〈 ( 1st ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) 〉 ) |
48 |
|
fvex |
⊢ ( 1st ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ∈ V |
49 |
|
fvex |
⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) ∈ V |
50 |
48 49
|
opth |
⊢ ( 〈 ( 1st ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) 〉 = 〈 ( 1st ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) 〉 ↔ ( ( 1st ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) = ( 1st ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ∧ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) = ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) ) ) |
51 |
50
|
simprbi |
⊢ ( 〈 ( 1st ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) 〉 = 〈 ( 1st ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) 〉 → ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) = ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) ) |
52 |
47 51
|
syl |
⊢ ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) ∧ 𝑟 ∈ 𝑅 ) → ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) = ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) ) |
53 |
|
fvex |
⊢ ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ∈ V |
54 |
|
vex |
⊢ 𝑟 ∈ V |
55 |
53 54
|
op2nd |
⊢ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) = 𝑟 |
56 |
55
|
fveq2i |
⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) = ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ 𝑟 ) |
57 |
55
|
fveq2i |
⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 𝑟 〉 ) ) = ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ 𝑟 ) |
58 |
52 56 57
|
3eqtr3g |
⊢ ( ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) ∧ 𝑟 ∈ 𝑅 ) → ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ 𝑟 ) = ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ 𝑟 ) ) |
59 |
17 23 58
|
eqfnfvd |
⊢ ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ) |
60 |
1 2 9
|
mrsubff1 |
⊢ ( 𝑇 ∈ mFS → ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1→ ( 𝑅 ↑m 𝑅 ) ) |
61 |
|
f1fveq |
⊢ ( ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1→ ( 𝑅 ↑m 𝑅 ) ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) → ( ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑓 ) = ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑔 ) ↔ 𝑓 = 𝑔 ) ) |
62 |
60 61
|
sylan |
⊢ ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) → ( ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑓 ) = ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑔 ) ↔ 𝑓 = 𝑔 ) ) |
63 |
|
fvres |
⊢ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) → ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑓 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ) |
64 |
|
fvres |
⊢ ( 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) → ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑔 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ) |
65 |
63 64
|
eqeqan12d |
⊢ ( ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑓 ) = ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑔 ) ↔ ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ) ) |
66 |
65
|
adantl |
⊢ ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) → ( ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑓 ) = ( ( ( mRSubst ‘ 𝑇 ) ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑔 ) ↔ ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ) ) |
67 |
62 66
|
bitr3d |
⊢ ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) → ( 𝑓 = 𝑔 ↔ ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ) ) |
68 |
67
|
adantr |
⊢ ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) → ( 𝑓 = 𝑔 ↔ ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ) ) |
69 |
59 68
|
mpbird |
⊢ ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) → 𝑓 = 𝑔 ) |
70 |
69
|
fveq1d |
⊢ ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) → ( 𝑓 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) |
71 |
70
|
expr |
⊢ ( ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) → ( 𝑓 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) ) |
72 |
71
|
ralrimdva |
⊢ ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) → ( ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) → ∀ 𝑣 ∈ 𝑉 ( 𝑓 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) ) |
73 |
|
fvres |
⊢ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) → ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑓 ) = ( 𝑆 ‘ 𝑓 ) ) |
74 |
|
fvres |
⊢ ( 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) → ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑔 ) = ( 𝑆 ‘ 𝑔 ) ) |
75 |
73 74
|
eqeqan12d |
⊢ ( ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑓 ) = ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑔 ) ↔ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) |
76 |
75
|
adantl |
⊢ ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) → ( ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑓 ) = ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑔 ) ↔ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) |
77 |
|
ffn |
⊢ ( 𝑓 : 𝑉 ⟶ 𝑅 → 𝑓 Fn 𝑉 ) |
78 |
|
ffn |
⊢ ( 𝑔 : 𝑉 ⟶ 𝑅 → 𝑔 Fn 𝑉 ) |
79 |
|
eqfnfv |
⊢ ( ( 𝑓 Fn 𝑉 ∧ 𝑔 Fn 𝑉 ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑣 ∈ 𝑉 ( 𝑓 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) ) |
80 |
77 78 79
|
syl2an |
⊢ ( ( 𝑓 : 𝑉 ⟶ 𝑅 ∧ 𝑔 : 𝑉 ⟶ 𝑅 ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑣 ∈ 𝑉 ( 𝑓 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) ) |
81 |
27 43 80
|
syl2an |
⊢ ( ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑣 ∈ 𝑉 ( 𝑓 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) ) |
82 |
81
|
adantl |
⊢ ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑣 ∈ 𝑉 ( 𝑓 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) ) |
83 |
72 76 82
|
3imtr4d |
⊢ ( ( 𝑇 ∈ mFS ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) → ( ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑓 ) = ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) |
84 |
83
|
ralrimivva |
⊢ ( 𝑇 ∈ mFS → ∀ 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∀ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ( ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑓 ) = ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) |
85 |
|
dff13 |
⊢ ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1→ ( 𝐸 ↑m 𝐸 ) ↔ ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) ⟶ ( 𝐸 ↑m 𝐸 ) ∧ ∀ 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∀ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ( ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑓 ) = ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) ) |
86 |
8 84 85
|
sylanbrc |
⊢ ( 𝑇 ∈ mFS → ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1→ ( 𝐸 ↑m 𝐸 ) ) |